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Education and Professional Experience
Summary of Presentation

Summary of Presentation

Ph.D Work : Comparative Study of Dynamic Time Warping (DTW)
Ph.D Work : Flexible Sequence Matching

Ph.D Work : Exemplary Sequence Cardinality

‘What is Matrix Profile

Post-Doc Work : AAMP algorithm

Post-Doc Work : kNN Matrix Profile
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Principal related work carried out during Ph.D



uring Ph.D Comparative study of sequence matching techniques
Flexibl >nce Matchi
Exemplary Sequenc

Time Series Matching to ‘“Word Spotting”

@ Modern digital devices accumulated
huge time series data Fig: Query word

@ Important need to : querying and
indexing

@ Prevalent ares are:

s
S— DNA
[ N\ NERI Fig: Sample scanned image
Text N\ /) ——
Mining | N </
/ [ Phoneme
S Sedwence | Classification |
— atching . .
_— Techniques \ J/ Fig: Sample key-word Alexandria
/[ N\ - ~
Shape /
Matching [~/ Image
/| Retrieval
v

o J Fig: Normalized projection profile

@ Many techniques extracts significant
“features”

@ Oneis image column based Fig: Normalized upper word profile !

1
T.M.Rath and R.Manmatha,"Word spotting for historical documents", IIDAR,vol.9,n0.2-4,pp.139-152,Aug.2006.
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uring Ph.D Comparative
Flexibl

Architecture de «Word Spotting»

/ Offline Featur e Extraction

Text line
Binarization and segmentation
All De-noisini based
document 9 proj ectioonn
Images profile

Segmentation of word
based on RLSA

RLSA threshold
estimation

Connected

F;T;uref:;:rmti;m and Components

offline feature storage . labelin

into data file (.dat) Matching Feature ¢
Technique extraction

Query image

Lines/words ranked
according to score

Fig: The block diagram of word spotting system
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:- During Ph.D Comparatl\e study of ﬂequence matching techniques

Exemplary Sequence C mhn ality

Feature Extraction

Column Based Feature Extraction:

N° Feature set Description

Fl1. Projection Profile

F2. Background-to-ink transition

F3. Upper Profile

F4. Lower Profile

Fs. Distance between upper and lower Profile
Fo6. Number of foreground pixels

F7. | Center of gravity (C.G.) of foreground pixels
F8. Transition at C.G.

Features Based on «Slit Style HOG»

Jeatishomn

Flg : Feature extraction using slit style sliding window Fig : Block normalization technique

y Mondal Presentation fo istant Professor position



Datasets

During Ph.D

Comparativ
Flexibl

udy of sequence matching techniques

Exemplary Sequence Cardinality

Dataset Name No of No of No of Properties
Query Target Pages
Images Words
GW-15-Col 15 2340 10 Hand Written manuscript
GW-90-Col 90 4860 20 of George Washington(GW)
(1755)
GW-15-HOG 15 675 (lines) 20

IS Fot Grdders
, A z &
Loller 5Pz
./t/;yu'an{ Z"t@éﬂ.
ODelobon FHerrnont-
Z;ZL leer. Aﬁ« cleores

ittt 2B
Woszchreslor. €orrsanrs

Fig: Some query images used for GW Fig: The sample page from GW dataset

dataset
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Fig: Some segmented text lines from
GW dataset




uring Ph.D Comparative
Flexibl

Datasets

Dataset Name No. of No. Target No of Properties
Query Words Pages
Images
Japan-4-HOG 4 1575 92 Japanese Script
\
ALY ,
’@ il £
@ %,
Fig: Some query images used for Japanese
dataset Fig: Sample page from the Japanese dataset
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Research :- During Ph.D Comparative study of sequence matching techniques

Flexible Sequence M
Exemplary Sequence Cz ality

Comparative Study of Sequence Matching Techniques for “Word
Spotting”

“Dynamic Time Warping”

@ DTW measures similarity between two time series X = x, x, X3, ..., Xp and

Y =y1,52,¥3; -, Yq

@ We construct a p x g matrix where the (i”’7 j”‘) element of the matrix contains the
distance: D (x;,y;) = (xi — ;)%
@ The path cost matrix ‘B is calculated by using ©

The best warping path (W) is contiguous set of matrix elements, which defines an
optimal mapping between X and Y.

Fan=9a,n
° ° ° o e o ? o o L] L] o o
: o o—6 o o i\x e e ol Py =Bi-1,0 + D0
:_: : : : [} L[] L] e O [ Do L[] ? L] ]<’,<P ’ ’
° ° ° ° ° L] L] L] L[] [ ] L] .‘_.l. o B
e oo oo |ooe o Boi=Porn+D0)
N ° ° ° L] e o L) L] L] e o .‘—l 1<]§‘1
e o o o o (‘B(ixj—l)
Fig: The distance matrix Fig: Th{i;l:?;h cost”  Fig: Th;;:ﬁ:ﬁ::g pach” m(hi) = Q(l'ai) +min m(iflyjfl)
i Bi-14)
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Research :- During Ph.D Comparative study
Fle

Exemplary Sequence Cardinality

of sequence matching techniques

DTW with varying “step size’’ conditions

@ In the case of classical DTW, the warping path can get stuck at some position

@ To avoid such situation, other step size conditions of DP-path have been proposed in the
literature.

B, 7-1)+D(t,7)

*—9 min| P(r-1,7-1)+2xD(t,7)

. ‘ P(t-1,7) +D(t,7)

12 1 2 3
il oo gl e o
o © L] [ ] [} o |
o 4 e o o P o o o / o
° o ° .‘
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uring Ph.D Comparative study of sequence matching techniques
Flexible ¢ >nce Matchi
Exemplary Sequenc

Comparative study on 6 databases

@ Tanmoy Mondal, Nicolas Ragot, Jean-Yves Ramel, Umapada Pal, "Comparative Study of Conventional Time Series
Matching Techniques for Word Spotting ", Pattern Recognition (PR) 73 :, 47-64, 2018.

o Tanmoy Mondal, Nicolas Ragot, Jean-Yves Ramel, Umapada Pal, Performance evaluation of DTW and its variants
for word spotting in degraded documents, ICDAR 2015 : 1141-1145

y Mondal Presentation f¢ f si 10/39



Flexible Sequence Matching



Research :- During Ph.D Comparative study of sequence matching techniques
Flexible Sequence Matching
Exemplary Sequence Cardinality

Flexible Sequence Matching

Partial Matching Capability of DTW  partial Matching Capability of MVM Partial Matching Capability of FSM

@ DTW cannot ignore noisy elements

@ MVM cannot have many-to-one and one-to-many matching. It is forced to find
the same number of correspondences

@ The FSM algorithm has overcome these two problems

One-to-Many matching by DTW One-to-Many matching by MVM One-to-Many matching by FSM

@ DTW cannot give correct match

@ MVM and FSM are able to give the right matches by skipping noisy elements
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:- During Ph.D Comparative study of sequence matching techniques
Flexible Sequence Matching

Exemplary Sequence Cardinality

Formation de I’algorithme FSM

@ FSM creates a relation R between x (query) and y (target), of lengths p and ¢:
X:(Xl,xz, """ 7x]7) andy:(yhyza """ 7yQ)?p§q

@ It finds y' (y’ c y) such that x best matches with y’.
@ The difference matrix ©: D;;=\/(yj—xi)%; 1 <i<p;1<j<q

5 3 4 4 7

[
12| @ ® ® ® ® o o [ o
(%) @ ]
3 ® 0 @ ¢ o © o
@
;| @ @ © o o e ¢ o 0
@ @
i@ @ @ o o e e ®
@ @
Bl e @ © o o e ¢ o
4
® @ @ @ @ @ @ @ @ @
Fig: La matrice de distance Fig: La DAG (G) ou matrice «path cost» 3

P(1,j)=D,,;if1<j<q
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Research :- During Ph.D Comparative study of sequence matching techniques

Flexible Sequence Matching
Exemplary Sequence Cardinality

Formation de I’algorithme FSM ..

@ Chagque cellule appartenant au i ligne est calculée en choisissant le noeuds
parents a: — Ligne précédente (i — 1)

— Aux colonnes (k) a partir de ((i — 1) — elasticity) A ((i — 1) + elasticity)

max[1, (i - 1) — elasticity] < k < min[q, (i - 1) + elasticity]

e [ [ [} [} o O O o o
0 o o O O 0O o o O O
@ @ () e O @ @ @ e O
@ o @ o (&) e e @ @ @
e © © e o e © ©o ® o
(&) (&) (&) (&) @ @ @ @

Fig: La matrice de «path cost» Fig: La matrice de «path cost»
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Research :- During Ph.D Comparative study of sequence matching techniques
Flexible Sequence Matching

Exemplary Sequence Cardinality

Formation de I’algorithme FSM ..

@ Par rapport a chacun de ces nceuds parents, les nceuds enfants ne peuvent
appartenir qu’ a :
— Ligne Suivante
— Colonne suivante (k + 1) jusqu’a (k + 1) + elasticity — |k — (i — 1)|"

2<i<p

k+1<j<min(q, (k+ 1)+ elasticity — max(0, {k — (i— 1) }))
(Bl - 1Lk) +Dij + (S x (= (k+1)))}

0O o o 0o o 0O o o ©
e @ o © e @ @ o ©
e e o o e e o o o

e © @ o o e © © o

e e o o e e o o

Fig: La matrice de «path cost» Fig: La matrice de «path cost»
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Research :- During Ph.D Comparative study of sequence matching techniques
Flexible Sequence Matching
Exemplary Sequence Cardinality

Formation of the FSM algorithm ..

@ Other possible links are:
— «many-to-one» : link just below (i — 1,5) a (i,j) : {P(i-1,)) +C+D;;}
— «one-to-many» : link just at left (i,j— 1) a (i,j) : {PBG,j- 1)+ C+ Dy}
@ A small penalty (€ = mean(9}“***)) is introduced to limit the numbers of
many-to-one and one-to-many matching

5 3 4 4 7

21 o © o o
S NCRC) B
e o
o I [12 3 3 4 23 4]
3 @ *] @ o
e O (] e O
o o e © o 4 e o —e @
B ¢ o © ® lS 3 4 4 7 l
(] e o (]
o o o o ‘e © o @ o
Fig: Corresponding matching elements
Fig: The path cost matrix Fig: The illustration of one-to-many of the query and target vectors

(blue) and many-to-one (red) matching
on toy examples
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uring Ph.D Comparative study of sequence matching techniques
Flexible Sequence Matching
Exemplary Sequence Cardinality

Some Visual Results

@ FSM has outperformed other sequence matching techniques
@ The noise or outliers (derivatives also) skipping capability helps FSM

@ The special characteristics of FSM is helpful in other domains e.g. finance, video
retrieval, shape matching etc.

Fig: Four separate query words their matching

Fig: Example of matching by FSM

o Tanmoy Mondal, Nicolas Ragot, Jean-Yves Ramel, Umapada Pal, "Flexible Sequence Matching Technique: An
Effective Learning-Free Approach for word-spotting", Pattern Recognition 60: 596-612 (2016)

@ Tanmoy Mondal, Nicolas Ragot, Jean-Y ves Ramel, Umapada Pal, Flexible Sequence Matching Technique :
Application to Word Spotting in Degraded Documents, ICFHR 2014 : 210-215, 2013
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Research :- During Ph.D Comparative study of sequence matching techniques
Flexible ¢
Exemplary Sequence Cardinality

Introduction

ESC has all the qualities as FSM
ESC can skip noisy elements from query

Choosing query become more easier

@ The proposed system, is more robust to:

@ Degradation noise
o Word derivatives
o Improper segmentation issues
@ For example, in French, the word cheval (horse) can have derivatives like

"o

"chevallier","chevalerie", "chevalier".
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Research :- During Ph.D Comparative study of sequence matching techniques
Flexibl Juence Matchi

Exemplary Sequence Cardinality

ESC : Mathematical Formulation

@ To make the 1" element of the query skip-able, one null element (0) is is
added at the beginning of both the query and target sequence (contrary to FSM)

@ Modified dissimilarity matrix (L) is created
@ Another matrix (.#;,) is utilized to follow the indexes

The immediate child of a skip-able node are connected with parents of their
immediate parents (Grand parents).

o O
@ @
@
D1, I<j<qg+1
o AT e @ @ e e © o o
Qi =14 skipCost if skipCost <D
Dij Sinon e © o o o e o o o
Fig: The “path cost” matrix Fig: The “path cost” matrix
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iring Ph.D Compa study of sequen atching techniques
Flexible Sequence Matc
Exemplary Sequence Cardinality

ESC: Formulation Mathématique

@ Le chemin le plus court entre chaque paire de nceuds accessibles dans G peut
étre trouvé a partir de la matrice «path cost» & ;.

‘@]J:QIJ iflSqu+]
{gzi—u( +Qix/’+

(skipCost x (j— (k+1)))} if o
{'@1}/*1*'@"')3!}1’} !
{yi_u + Q:+Q,'7_,'}

32,'7/' =min

{2<i<q+1}
L4 {(i-1) - elasticity < k < (i — 1) + elasticity}
{k+1<j<(k+1)+elasticity— k- (i—1)|}
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:- During Ph.D y arative study of sequence matching techniques
Sequence Matching
Exemplary Sequence Cardinality

ESC: Mathematical Formulation

@ The back tracking process would start from the cell at the last row and at the ;"
column of the path cost matrix &7, wherep+ 1 <j< g+ 1

@ ESC has the same complexity as FSM i.e. ©((2.|g - p|*).p)

9 12 9

A1

Fig: Matching ability of ESC on toy examples

Fig: Matching ability of ESC on some artificial images
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Similarity Search in Time Series



Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

What are Time Series? 1 of 2

A time series is a collection of observations made sequentially in time.
More than most types of data, time series lend themselves to visual inspection and intuitions...

25.350
25.350
25.400 28
25.400
25.325
25.225
25.200
25.175

29

27

26

Electric Potential

24.625
24.675 23
24.675
24.675

For example, looking at the numbers in this blue vector tells us nothing.

But after plotting the data, we can recognize a heartbeat, and possibly
even diagnose this person's disease.

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

* A similarity measure compares two time series and produces a
number representing their similarity

* Adistance measure is the opposite of similarity measure

* Euclidean Distance
* Correlation Coefficient
* Cosine Similarity

* Dynamic Time Warping
* Edit Distance
* Longest Common Sub-sequence

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

b

Relationship with Euclidean Distance

* Maximizing correlation coefficient can be
achieved by minimizing normalized
Euclidean distance and vice versa

* Correlation coefficient is bounded
between -1 and 1, while z-normalized o
Euclidean distance is bounded between b
zero and a positive number dependent on
m
m = Length of Sub-Sequence

20 for m =100

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

Working Formula N

m
Zi:l XiYi — My ly
Moy 0y

d®@,y) = [2m(1— )

* We will use the above z-Normalized Euclidean distance as the
similarity measure for the rest of the presentation

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

What is Matrix Profile ?

- Intuition behind the Matrix Profile: Assume we have a time series T, lets start with a synthetic one...
- we are only interested in small local sub-sequences, of this length, m LT_J

A I
,MWWM | U \Wwwwwwmwm»fwvw«WW \ﬂv‘"\ﬂW”W‘Mvﬂr\www""m’wl\w’w’wI; V \U/ \/WWWWMWMW

m =100

| | | | | J

0 500 1000 1500 2000 2500 3000

IT | =n= 3000

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

What is Matrix Profile ?

We can create a companion “time series”, called a Matrix Profile or MP.

The matrix profile of a time series T, records at the it" location the distance of its nearest
neighbor sub-sequence under z-normalized Euclidean Distance

For example, in the below, the sub-sequence starting at 921 happens to have a distance of
177.0 to its nearest neighbor (wherever it is).

wwwmwwf | Lk MM«WWWMW WWMMWWW \, ‘\ (‘, MMWWMWMMWW |/ N VW"W b N
-

LT

1000 1500 2000 2500 300

921

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

What is Matrix Profile ?

Another example. In the below, the sub-sequence starting at 378 happens to
have a distance of 34.2 to its nearest neighbor (wherever it is).

i A AN Y
WWM-"(«MJ i \Mm bt gl | | y‘ \, /mw,m«%y:ﬁvwwww»‘wwM/ \v( \ “W\‘ PN
UV VY vy

LYJ
Lr

| | | | |
[ 500 1000 1500 2000 2500 3000

378 The Matrix Profile is always shown in blue.
The real time series data, is generally shown in red.

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

What is Matrix Profile ?

We can create another companion sequence, called a matrix profile index
(MP1).

The MPI contains integers that are used as pointers

It allows us to find the nearest neighbor to any sub-sequence in constant
time.
14 i
Ao WMM \" | \v wwwmwu«nwwwww ,,‘ \ ,mwwwwwmwmmw \ / \qum N

L . I

0 i 500 1000 | 1500 2000 2500 3000

1373 | 137
S)
A

378 ‘378 ‘234 ‘
A

1389 ‘ ‘ 368

‘\matrix profile index

1 (zoom in)

— =

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

What is Matrix Profile ?

Note that the pointers in the matrix profile index are not necessarily symmetric.

If A points to B, then B may or may not point to A

An interesting exception, the two smallest values in the MP must have the same
value, and their pointers must be mutual. This is the classic time series motif.

y ~
AR AR
| epsrpinitrintmian | | L ="y / “k |

bmww‘\wwwmw

LYJ

| | | | |
0 500 1000 1500 2000 2500 3000

1373 1389 368 | 378

4

137 378 | 234
5

'S

200 [ 200 [ 200 [ 200 [ 200
0 1 |2 3 3
A

—~

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

How to “read” a Matrix Profile ?

Where you see relatively low values, you know that the sub-sequence in the
original time series must have (at least one) relatively similar sub-sequence
elsewhere in the data (such regions are “motifs” or reoccurring patterns)

Where you see relatively high values, you know that the sub-sequence in the
original time series must be unique in its shape (such areas are “discords” or

anomalies).
Must be an anomaly in the

— original data, in this

We call these Time Series

egion

Discords

| | 1 |
0 500 1000 1500 2000 2500 3000

Must be conserved shapes (motifs) in the
original data, in these three regions

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

Matrix Profile from Distance Profiles

j[h
PRV SO i PO
' T (| i The distance matrix is symmetric
The diagonal is zero
dy, dy, Ay nme D, Cells close to the diagonal are very small
a5 ) dynme1 D,
jth d; d;, d;; 1 - dipme D,
\\ dj;is the distance between the i*" window and
th i ) ;
Ayt | Dnmenz T > N the j! window of the time series
Min(D,) | Min(D,) l Min(D)) Min(D, ,,)
[ [P | 1 = [ o [ Pem ]

Matrix Profile: a vector of distance between each
subsequence and its nearest neighbor

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix_Profile_Tutorial_Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

STMP: Scalable Time Series Matrix Profile Algorithm

j[h
ORI WO I PO
L | [
3 dp,; dy, Ay pme D,
i a5 ) dynme1 D, MP(1: n- mt ) =
P ) ) d = MASS(T, T(i:i+m1));
ith X d;; d;, d;; ;i1 D MP = mn([M ; d]);

l g ! end
¥ Qs (G| = | = | = FomammdOrm

Min(D,) | Min(D,) l Min(D) Min(D, .;)

[ [P | 1 = [ o [ Pem ]

Time complexity of STMP is O (n?logn )

Matrix Profile: a vector of distance between each Space complexity of STMP is 0(1’1)
subsequence and its nearest neighbor

* Slide credit: Eamonn Keogh; https://www.cs.ucr.edu/~eamonn/Matrix Profile_Tutorial Part2.pdf
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Similarity Search : From Distance Profile to Matrix Profile

Le séries temporelles

LA e + g A i

Matrix Profile

e T oy

Une paire de points minimum

Le "Matrix Profil" a deux points minimum. Cette paire de
points minimum correspond au 1er motif de la série temporelle.
(la paire de sous-séquences la plus proche de la série
temporelles)
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Similarity Search

Similarity Search : From Distance Profile to Matrix Profile

Produit scalaire de la iéme fenétre et
de la jeme fenétre. Une fois que nous
connaissons QT j, il faut du temps a
O(1) pour calculer d; ;

QT; ;|- mp;u;
d i,j= 2m |1 —
mao;o ;
Nous avons précalculé et stocké les Moyennes et les STDs dans 'espace O(n)

La relation entre QT; j et QT ;41 j41

O(1) time complexity!

QTi41,j+1=QT; j—tit; +tiymtjrm

or position
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Fig : Top: different time series of the ECG dataset; Middle: matrix profile generated by normalized Euclidean z distance, using
STOMP; Bottom: Matrix profile generated by non-normalized Euclidean distance, using AAMP
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Fig : Top: Four subsequences of length 50 from the sheep database; Middle: nearest neighbors obtained by STOMP; Bottom:
Nearest neighbors obtained by AAMP
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AAMP Algorithm: Using Classical Euclidean Distance

Diagonal Shift 1

Iteration 2 n 3
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Diagonal Shift 2
Iteration 1 Iteration 2 Iteration 3
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Fig : Exemple d’exécution AAMP sur une série temporelle de longueur n = 10, et avec longueur de sous-séquence m = 4

SSq1 SSq2 SSq3 SSq4 SSq5 SSq6 SSq7

$Sq 1
2 . .

SSq D;; : Euclidean distance between T, and
$Sq3
SSq4 Y}’m

q Dj_1j-1: Euclidean distance between T;_1
ssas and T; ’
$5q6 Jj=1,m
$Sq7

- /D2 . ) — 7
SSa = Sub-Seauence Dij 7\/D1—1.j—1 (ticr = £i21)% + (tim-1 = bipm-1)

Fig : Les sous-séquences sont organisées sous forme de
matrice pour mieux comprendre I’algorithme AAMP

@ Reza Akbarinia, Bertrand Cloez, Tanmoy Mondal, Florent Masseglia; Efficient Matrix Profile Algorithms for
Normalized and Non-Normalized Distances; soumis en KDD; 2021;
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Time Series Data Time Series Data

Discord Sub-séquence

Discord Sub-sequence —

SCRIMP++ Matrix Profile SCRIMP++ Matrix Profile

AAMP Matrix Profile AAMP Matrix Profile

Fig : Top: two time series from a real ECG database. Discordances visible in these time series are marked by the color red.
Middle: the matrix profile, obtained by the SCRIMP++ algorithm; Bottom: the profile of the matrix, obtained by the AAMP
algorithm.
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Longitude Time Series Height Time Series
Matrix Profile of Matrix ?roflle (?f Height
Time Series

Longitude Time Series

Distance —»

Distance —»

Time series index —» Time series index ~ —»

Fig : Top: the longitude and height time series of Seismic dataset (outliers are marked by red color); Bottom: the matrix profile
obtained by AAMP algorithm.
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Fig : The execution times of six algorithms with increasing the subsequence length (1m): a) Execution time of the six algorithms
on a time series of length 68000 (protein dataset). b) Execution time of the six algorithms on a time series of length 50000
(sheep dataset).
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Fig : The execution time of six algorithms are plotted with the increase of time series length (n): ¢) Execution time of the six
algorithms on variable time series length (protein dataset) with m = 256. d) execution time of the six algorithms on variable
time series length (sheep dataset) with m = 256.
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Recap : What is INN Matrix Profile

Le séries temporelles

L T P TR T, Dy e ll‘,MMM‘MMW fikeidbdptpiin

Matrix Profile

e T oy

Une paire de points minimum

Le "Matrix Profil" a deux points minimum. Cette paire de
points minimum correspond au 1er motif de la série temporelle.
(la paire de sous-séquences la plus proche de la série
temporelles)
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Recap : What is INN Matrix Profile

Produit scalaire de la iéme fenétre et

de la jeme fenétre. Une fois que nous

connaissons

QT;,j, il faut du temps a

O(1) pour calculer d; ;

di,j=2m(1-

QT; ; —mﬂiﬂj)
mao;o ;

Nous avons précalculé et stocké les Moyennes et les STDs dans 'espace O(n)

La relation entr

e QT jet QT 11,541

QT;41,j+1=QT; j -

titj + ti+m tj+m O(1) time complexity!

tant Professor po 30/39
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Recap : What is INN Matrix Profile

WWM
di diz dinmet
dZ,1 dZ,Z dZ,n—moY
‘ QTi,1 | QTi1,2 ‘ |QT1 tnom| Qi1
q q Torme met
i1 2 i,n-me1 \ \ \ \
[Q [ Q0 [ Qs |~ [Qiwms
domer,1 | omer,2 s t,neme 1 1 1 l l
lmin l min l min lmin ) ) P d a
T I P Profil de dlstance‘ ‘ i2 ‘ i,3 | | i,nrm-1|
Update if Smaller 1 ' ' I
Matrix Profil [ Py [ P, [ Py | w [ Pomi |

Nous pré-calculons QT, et QT;, (x=1,2,3,...,n-
m+1). Puis itérer a travers i=2, 2, 3, ..., n-m+1
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KNN Matrix Profile

@ Technique proposed for the formulation of kNN Matrix Profile
@ Obtain distance with query sub-seqeunecs and the target-1 then the target-2
until the K™ target
@ Continue to update the (K + 1)™ match; use sorting to find; the maximum
value and discard it; or use the technique based on ''Priority Queue'
JU\

. SO
o I
d1 1 d1,2 di,n—m‘l
P 7 7 Remarque: cette matrice de
2.1 2.2 2,n-me1 distance est symétrique!
d;; est la distance entre
jth i1 di2 | . laiéme fenétre et la jeme
fenétre de la série
temporelles
Doomer,t | Qpemet 2 | oo o |drmer,nmen
lsm(o,) l Sort(D,) l Sort(D,) lsmmn i)
| P, P, | | Prymet \ X _ .
kNN Matrix Profile: k vecteur de distance entre
| P, P, ‘ ‘ Prmet chaque sous-séquence et son plus proche voisin
[P Py | - = || oo || Bl |
| P, \ P, | | | | Prymet \
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== INN Matrix Profile
L6l 4NN Matrix Profile

o 100 200 300 400 500 00 700

Fig. The INN and 4NN MP are plotted with different colors in which the motifs and discords are marked.
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Importance of KNN Matrix Profile

== 1NN Matrix Profile
— 4NN Matrix Profile ~ Inset-8 .
nset -9

Discord in 4NN —__| Discord in 4NN R

Appearance in INN — Appearance in INN —

Weak motif
| !

Weak motif
|

|
\

Strong mofif
|

|
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Strong motif

Strong motif
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Fig : The INN and 4NN MP are plotted with different colors in which the motifs and discords are marked

o Tanmoy Mondal, Reza Akbarinia, Florent Masseglia; "Matrix Profile Based kNN Search over Large Time Series";
Data Mining and Knowledge Discovery (DMKD), 2023
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== INN Matrix Profile
— 2NN Matrix Profile — INN Matrix Profile
Inset -1 Inset-2 = 4NN Matrix Profile

" Discordin 4NN
EII \‘ Inset -4 P
: Discordin aNN—"" > Appsoce

\ \ Inset-3

Inset -5

Fig. The extracted motifs and discords are illustrated in the plot : (a) The INN vs 2NN MP and (b) INN vs 4NN MP of a part of
the time series is plotted
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Importance of KNN Matrix Profile

1% sub-sequence 3 sub-sequence

Distribution of distances between subSeq3 and all other sub-sequences
4= 2 sub-sequence = Distribution of distances between subSeq2 and all other sub-sequences

== Distribution of distances between subSeq1 and all other sub-sequences

= 1NN Matrix Profile
= 2NN Matrix Profile
= 3NN Matrix Profile

Selected

<+— Selected

Fig. One special case of outliers detection

Fig. Special case of the outliers presence is depicted by
considering a toy time series (top). The INN, 2NN and 3NN
MPs are shown for the time series (bottom)
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Threshold to define

(a) (b)

— 1NN Matrix Profile
= 2NN Matrix Profile

= NN Matrix Profile
= 4NN Matrix Profile

(d) (e) (f)
Fig. The results of UCR dataset
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Fig. The usefulness of the kNN MP using Yahoo dataset. Time series is plotted at the top followed by INN,2N N, 3N N, 4N
N, and 5N N MPs.
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Table: The outlier detection accuracy of various KNN MP based on 3 high
thresholds on the Yahoo dataset (“A1Benchmark-Real”)

Accuracies
kNN MP Threshold Threshold
(95%) (90%) Threshold

(85%)
INN 0.317 0413 0.469
2NN 0.349 0.485 0.556
3NN 0.386 0.509 0.584
4NN 0.439 0.522 0.630
SNN 0.458 0.553 0.653
6NN 0.490 0.566 0.673
7NN 0.500 0.610 0.686
8NN 0.509 0.622 0.698
9NN 0.522 0.629 0.704
10NN 0.542 0.643 0.720
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Parallel Execution of KNN Matrix Profile

Fig : Architecture of parallel execution by using multiple cores
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Performance : KNN Matrix Profile
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Fig. The variation of execution time with increa
generating kNN MP

ing k for Fig. The variation of execution time with increasing the length
of time series
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Fig. The variation of computational time with increasing the . X X o ) N
length of subsequence (i) for the protein and sheep datasets Fig. T_he computational time th Increasing the numb.er of
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