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ABSTRACT
Matrix profile is an efficient technique for knowledge extraction from
time series, e.g., motif and anomaly detection. Several algorithms
have been yet proposed for computing it, e.g., STAMP, STOMP and
SCRIMP++. All these algorithms use the z-normalized Euclidean
distance to measure the distance between subsequences. However,
as we illustrate in this paper, for some datasets the non-normalized
(classical) based matrix profile is more useful. Thus, efficient matrix
profile techniques based on both z-normalized and non-normalized
distances are necessary for knowledge extraction from different time
series datasets.

In this paper, we propose such efficient techniques. We first pro-
pose an efficient algorithm called AAMP for computing matrix
profile with the non-normalized Euclidean distance. Then, we ex-
tend our algorithm for the p-norm distance. We also propose two
algorithms called ACAMP and ACAMP-Optimized that use the
same principle as AAMP, but for calculating matrix profile by using
z-normalized Euclidean distance. We implemented and evaluated
the performance of our algorithms through experiments over real
world datasets. The results illustrate that AAMP is very efficient for
computing matrix profile for non-normalized Euclidean distances.
They also illustrate that the ACAMP-Optimized algorithm is signif-
icantly faster than the state of the art matrix profile algorithms for
the case of z-normalized Euclidean distance.

KEYWORDS
Matrix Profile, STAMP, STOMP, Similarity Search, Motifs & Dis-
cords Discovery.

1 INTRODUCTION
Matrix profile has been recently proposed as an efficient technique to
the problem of all-pairs-similarity search in time series [1–8]. Given
a time series𝑇 and a subsequence length𝑚, the matrix profile returns
for each subsequence, the distance to the most similar subsequence
in the time series. It is itself a very useful time series for data analysis,
e.g., detecting the motifs (represented by low values), or anomalies
(represented by high values), etc.

Recently, efficient algorithms have been proposed for matrix pro-
file computation, e.g., STAMP [1], STOMP [2] and SCRIMP++ [8].
All these algorithms use the z-normalized Euclidean distance to mea-
sure the distance between subsequences. They are based on a tech-
nique, named as Mueen’s Algorithm for Similarity Search (MASS)
[9] for efficient calculation of z-normalized Euclidean distance, by
exploiting the Fast Fourier Transform (FFT). The z-normalized Eu-
clidean distance formula used in the MASS algorithm is derived from
Pearson correlation which works only for computing z-normalized
Euclidean distance, and makes it inappropriate for computing classi-
cal Euclidean distance.

However, we observed that for some datasets, the non-normalized
(classical) Euclidean distance is more useful for knowledge discov-
ery. In fact, in some cases the z-normalization can remove rare and

important information. As an example, consider Fig. 1a (top), which
shows two time series from the real ECG dataset. In Fig. 1a (middle)
and (bottom), we see the matrix profiles generated for the two time
series by considering z-normalized (using STOMP algorithm) and
non-normalized Euclidean (using our AAMP) distances respectively.
In this example, the matrix profiles generated using the z-normalized
distance loose the information about the anomalies (marked by ma-
genta color in Fig. 1a top.). But, the matrix profile calculated by
using non-normalized Euclidean distance can clearly highlight those
anomalies.

In addition, the z-normalized Euclidean distance does not neces-
sarily provide the nearest neighbors (matches) of the subsequences
from the same range of values. Hence, the match of a subsequence
can come from completely different range of values and in some
applications these matches could be considered as irrelevant. An
example is depicted in Fig. 1b, where we show the matches for
four query subsequences, taken from the time series of a real sheep
dataset, representing different activities like RUNNING and WALK-
ING (see detail of the dataset in Section 5.1.1). It is clearly visible
that our proposed AAMP algorithm that uses the non-normalized
Euclidean distance is capable of returning matches that are in the
same range of values as the query subsequences. In Fig. 1b, we only
have shown few selective examples among several others, where by
using non-normalized Euclidean distance, we found better matches.

In fact, the z-normalized Euclidean distance based matrix profile
is able to find the shape-wise matches from any range of values and
that’s why the shape-wise similarity could be found irrespective of
the numerical values. This is an advantage for some applications, but
a disadvantage for others (i.e., those that need the matches from the
same range). This is why, a combination of both z-normalized and
non-normalized based matrix profiles is necessary for knowledge
extraction in a wide range of applications.

In this paper, we provide efficient techniques for the calculation of
matrix profile for both z-normalized and non-normalized distances.
Our contributions are as following:

• We propose an efficient algorithm called AAMP for comput-
ing matrix profile with the non-normalized Euclidean distance.
AAMP is executed in a set of iterations, such that in each
iteration the distance of subsequences is incrementally com-
puted. We also extend AAMP to compute matrix profile for
the p-norm distance that is more general than the Euclidean
distance which is actually a 2-norm distance.

• We propose an algorithm called ACAMP that uses the same
principle as AAMP but for the z-normalized Euclidean dis-
tance. In ACAMP, we use an incremental formula for comput-
ing the z-normalized distance that is based on some variables,
calculated incrementally in a sliding window that moves over
the subsequences of the time series. We also propose an im-
proved version of the ACAMP algorithm, called ACAMP-
optimized, that is significantly faster than ACAMP.

• We implemented our algorithms and compared them with
the state of the art algorithms on matrix profile, i.e., STOMP,
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Figure 1: a) Top: example of two different time series from ECG dataset; Middle: matrix profile generated by z-normalized Euclidean
distance using STOMP algorithm; Bottom: matrix profile generated by non-normalized Euclidean distance using our AAMP algorithm.
b) Top: four subsequences of length 50 from sheep dataset; Middle: the nearest neighbors obtained by STOMP; Bottom: the nearest
neighbors obtained by AAMP are in the same range as the queries, while the results obtained by STOMP are in very different ranges.

SCRIMP and SCRIMP++, using several real world datasets.
The results show excellent performance gains. They show that
AAMP and ACAMP-optimized are significantly faster than
the state-of-the-art algorithms for matrix profile computation.
They also illustrate the utility of detecting discords/outliers
in datasets by using AAMP based on the non-normalized
Euclidean distance over STOMP, SCRIMP and SCRIMP++
that are based on the z-normalized Euclidean distance.

It is worth mentioning that our algorithms, i.e., AAMP and
ACAMP, are exact, anytime and incrementally maintainable. They
take a deterministic execution time that only depends on the time
series and subsequence length.

The rest of this paper is organized as follows. In Section 2, we give
the problem definition. In Section 3, we describe our AAMP algo-
rithm for computing matrix profile with non-normalized Euclidean
and p-norm distances. In Section 4, we propose the ACAMP algo-
rithm for z-normalized distance. Section 5 presents the experimental
results. Section 6 discusses related work and Section 7 concludes
the article.

2 PROBLEM DEFINITION
In this section, we give the formal definition of the matrix profile,
and describe the problem which we address in this article.

Definition 2.1. A time series𝑇 is a sequence of real-valued numbers
𝑇 = ⟨𝑡1, . . . , 𝑡𝑛⟩ where 𝑛 is the length of 𝑇 .

A subsequence of a time series is defined as follows.

Definition 2.2. Let 𝑚 be a given integer value such that 1 ≤ 𝑚 ≤ 𝑛.
A subsequence 𝑇𝑖,𝑚 of a time series 𝑇 is a continuous sequence of
values in 𝑇 of length 𝑚, starting from position 𝑖. Formally, 𝑇𝑖,𝑚 =
⟨𝑡𝑖 , . . . , 𝑡𝑖+𝑚−1⟩ where 1 ≤ 𝑖 ≤ 𝑛 −𝑚 + 1. We denote 𝑖 as the start
position of 𝑇𝑖,𝑚 subsequence.

For each subsequence of a time series, we can compute its distance
to all subsequences of the same length in the same time series. This
is called a distance profile.

Definition 2.3. Given a query subsequence 𝑇𝑖,𝑚 , a distance profile
𝐷𝑖 of 𝑇𝑖,𝑚 in the time series 𝑇 is a vector of the distances between
𝑇𝑖,𝑚 and each subsequence of length 𝑚 in time series 𝑇 . Formally,
𝐷𝑖 = ⟨𝑑𝑖,1, . . . , 𝑑𝑖,𝑛−𝑚+1⟩, where 𝑑𝑖, 𝑗 is the distance between 𝑇𝑖,𝑚
and 𝑇𝑗,𝑚 .

Note that the term distance in Definition 2.3 does not refer to the
mathematical definition of distance. It only gives a measure on the
difference between two subsequences. For instance the z-normalized
Euclidean distance does not satisfy the (mathematical) axioms of a
distance. A matrix profile is a vector that represents the minimum
distance between each subsequence and all other subsequences of a
time series 𝑇 .

Definition 2.4. Given a subsequence length 𝑚, the matrix profile
of a time series 𝑇 is a vector 𝑃 = ⟨𝑝1, . . . , 𝑝𝑛−𝑚+1⟩ such that 𝑝𝑖 is
the minimum distance between the subsequence 𝑇𝑖,𝑚 and all other
subsequence of𝑇 , for 1 < 𝑖 < 𝑛−𝑚+1. In other words, 𝑝𝑖 =𝑚𝑖𝑛(𝐷𝑖 ),
i.e., 𝑝𝑖 is the minimum value in the distance profile of 𝑇𝑖,𝑚 .

We are interested in the efficient computation of matrix profile
using following three different distance measures: 1) Euclidean
distance; 2) p-norm distance that is a generalization of Euclidean
distance; 3) z-normalized Euclidean distance.

Definition 2.5. The Euclidean distance between two subsequences
𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is defined as:

𝐷𝑖, 𝑗 =

√√
𝑚−1∑︁
𝑙=0

(𝑡𝑖+𝑙 − 𝑡 𝑗+𝑙 )2 (1)

In this paper, sometimes we call the Euclidean distance as non-
normalized (classical) Euclidean distance.
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Definition 2.6. Let 𝑝 > 1 be a positive integer, then the p-norm
distance between two subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is defined as:

𝐷𝑃𝑖, 𝑗 = 𝑝

√√
𝑚−1∑︁
𝑙=0

(𝑡𝑖+𝑙 − 𝑡 𝑗+𝑙 )𝑝 (2)

The z-normalized Euclidean distance between two subsequences
is defined as follows.

Definition 2.7. Let 𝜇𝑖 and 𝜇 𝑗 be the mean of the values in two
subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respectively. Also, let 𝜎𝑖 and 𝜎 𝑗 be
the standard deviation of the values in 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respectively.
Then, the z-normalized Euclidean distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is
defined as:

𝐷𝑍𝑖, 𝑗 =

√√
𝑚−1∑︁
𝑙=0

(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖
−
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)2
(3)

A shapelet is a subsequences that can maximally represent the
class of a time series. The matrix profile can be used for shapelet
detection (see Section S.2). Let us define the joint matrix profile of
two time series that is needed for explaining the shapelet discovery
using matrix profile.

Definition 2.8. Let 𝑚 be the subsequence length, and 𝐴 and 𝐵 be
two time series of length 𝑛. The joint matrix profile of 𝐴 with 𝐵 is a
vector 𝑃𝐴𝐵 = ⟨𝑝1, . . . , 𝑝𝑛−𝑚+1⟩ such that 𝑝𝑖 is the minimum distance
between the subsequence 𝐴𝑖,𝑚 and all subsequence of time series 𝐵.

3 AAMP
In this section, we propose the AAMP algorithm for computing
matrix profile by using the Euclidean distance. At first, we present
the formula for incremental computation of the Euclidean distance
and then propose the AAMP algorithm which uses this formula for
computing matrix profile.

3.1 Incremental Computation of Euclidean
Distance

Here, we present a formula that allows us to compute the Euclidean
distance between two subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 based on the
Euclidean distance of subsequences 𝑇𝑖−1,𝑚 and 𝑇𝑗−1,𝑚 . The formula
is presented by the following lemma.

Lemma 1. Let 𝐷𝑖, 𝑗 be the Euclidean distance between two sub-
sequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 . Let 𝐷𝑖−1, 𝑗−1 be the Euclidean distance
between two subsequences 𝑇𝑖−1,𝑚 and 𝑇𝑗−1,𝑚 . Then 𝐷𝑖, 𝑗 can be
computed as:

𝐷𝑖, 𝑗 =
√︃
𝐷2
𝑖−1, 𝑗−1 − (𝑡𝑖−1 − 𝑡 𝑗−1)2 + (𝑡𝑖+𝑚−1 − 𝑡 𝑗+𝑚−1)2 (4)

Proof. Let 𝑇𝑖,𝑚 = ⟨𝑡𝑖 , 𝑡𝑖+1, . . . , 𝑡𝑖+𝑚−1⟩ and
𝑇𝑗,𝑚 = ⟨𝑡 𝑗 , 𝑡 𝑗+1, . . . , 𝑡 𝑗+𝑚−1⟩. Then the square of the Euclidean dis-
tance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is computed as:

𝐷2
𝑖, 𝑗 =

𝑚−1∑︁
𝑙=0

(𝑡𝑖+𝑙 − 𝑡 𝑗+𝑙 )2 (5)

And the square of the Euclidean distance between 𝑇𝑖−1,𝑚 and
𝑇𝑗−1,𝑚 is:

𝐷2
𝑖−1, 𝑗−1 =

𝑚−1∑︁
𝑙=0

(𝑡𝑖−1+𝑙 − 𝑡 𝑗−1+𝑙 )2 (6)

By comparing Equations (5) and (6), we have:

𝐷2
𝑖, 𝑗 = 𝐷2

𝑖−1, 𝑗−1 − (𝑡𝑖−1 − 𝑡 𝑗−1)2 + (𝑡𝑖+𝑚−1 − 𝑡 𝑗+𝑚−1)2 (7)

Thus, we have:

𝐷𝑖, 𝑗 =
√︃
𝐷2
𝑖−1, 𝑗−1 − (𝑡𝑖−1 − 𝑡 𝑗−1)2 + (𝑡𝑖+𝑚−1 − 𝑡 𝑗+𝑚−1)2 (8)

By using the above equation, we can compute the Euclidean distance
𝐷𝑖, 𝑗 by using the distance 𝐷𝑖−1, 𝑗−1 in 𝑂(1).

3.2 Algorithm
The main idea behind AAMP is that for computing the distance
between subsequences, it uses diagonal sliding windows, such that
in each sliding window, the Euclidean distance is computed only
between the subsequences that have a precise difference in their
starting positions. These sliding windows allow us to use Equation
(4) for efficient distance computation.

Algorithm 1 shows the pseudo-code of AAMP (for now, ignore
the violet colored lines). Initially, the algorithm sets all values of
the matrix profile array to infinity (i.e., maximum distance) and the
matrix profile index array to 1. Then, it performs 𝑛 −𝑚 iterations
using a variable 𝑘 (1 ≤ 𝑘 ≤ 𝑛 − 𝑚). In each iteration of 𝑘, the
algorithm calculates distance between 𝑖𝑡ℎ subsequence (i.e. 𝑇𝑖,𝑚)
and the subsequence which is 𝑘 positions apart from it, i.e.,𝑇𝑖+𝑘,𝑚+𝑘 .
The value of 𝑖 is primarily taken as 1 then it iterates from 2 to
𝑛 −𝑚 + 1 − 𝑘 values in Line 13.

In each iteration 𝑘 , AAMP firstly computes the Euclidean distance
of the 1𝑠𝑡 subsequence of the time series, i.e., 𝑇1:𝑚 , with the one
that starts at 𝑘 positions from it, i.e. subsequence 𝑇𝑘+1:𝑚+𝑘 The
first distance computation is done using the classical formula of
Euclidean distance, i.e. using Equation (1) (see Line 6). Then, in a
sliding window, the algorithm incrementally computes the distance
of other subsequences with the subsequences that are 𝑘 position apart
from them (i.e. 2𝑛𝑑 with 3𝑟𝑑 subsequence, 3𝑟𝑑 with 4𝑡ℎ subsequence
etc.), and this is done in 𝑂(1) time. If the computed distance is
smaller than the existing distance value in the matrix profile array 𝑃 ,
then the smaller distance is saved in the matrix profile along with it’s
index (see Lines 7 − 12 and 15 − 20). Note that, we use the property
that the distance between 𝑖𝑡ℎ and 𝑗𝑡ℎ subsequences is equal to the
distance between 𝑗𝑡ℎ and 𝑖𝑡ℎ subsequences; i.e. 𝑑𝑖𝑠𝑡𝑖, 𝑗 = 𝑑𝑖𝑠𝑡 𝑗,𝑖 (see
Lines 8 − 9 & 11 − 12; and Lines 16 − 17 & 19 − 20). In AAMP, we
use square of the Euclidean distances for comparing the distances of
different subsequences (see Lines 6 and 14), and at the end of the
algorithm, square of these distances is replaced by taking the 𝑠𝑞𝑟𝑡
to obtain the real distances in the matrix profile (see Line 22). This
reduces the number of 𝑠𝑞𝑟𝑡 operations done during the execution of
the algorithm.

Example 1. Figure 2a shows an example of executing AAMP over
a time series of length 𝑛 = 10 and for subsequences of length𝑚 = 4.
In iteration 1, the first Euclidean distance is calculated between 𝑇1,𝑚
and 𝑇2,𝑚 and the sliding window 𝑆𝑊 1. Then the sliding window
moves to the next subsequences (i.e. sliding window 𝑆𝑊 2), and
incrementally computes the distance between𝑇2,𝑚 and𝑇3,𝑚 by using

3
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SSq 1 SSq 2 SSq 3 SSq 4 SSq 5 SSq 6 SSq 7

SSq 1 1 2 3 4 5 6

SSq 2 1 1 2 3 4 5

SSq 3 2 1 1 2 3 4

SSq 4 3 2 1 1 2 3

SSq 5 4 3 2 1 1 2

SSq 6 5 4 3 2 1 1

SSq 7 6 5 4 3 2 1

        SSq = Sub-Sequence

(b)

Figure 2: a) Example of AAMP execution on a time series of length 𝑛 = 10, and with subsequence length𝑚 = 4. The total number of
subsequences is 𝑛 −𝑚 + 1 = 10 − 4 + 1 = 7. In iteration 𝑘 , the distances between the subsequences that are 𝑘 positions apart from each
other are computed. The first distance in each iteration is computed using the normal Euclidean distance function in O(m), and the
other distances are computed incrementally in a constant time. b) The subsequences are arranged in a matrix to better understand the
functioning of AAMP algorithm. By looking at the cells of the matrix, we can see in which iteration, the distance of two subsequences is
calculated. Different iterations are represented by different colors.

the Equation (4) in𝑂(1) time. Then, the sliding window moves to the
next subsequences and computes their distances, i.e., 𝑇3,𝑚 and 𝑇4,𝑚 .
This distances computation process continues for all the subsequence
pairs, which are 1 element/index apart from each other’s starting
positions. For iteration 1, the distances computed between all the
subsequence pairs are marked by yellow color in the matrix shown
in Fig. 2b.

In iteration 2, the Euclidean distance is computed between each
subsequence and the one which is 2 elements/indexes apart (fol-
low the bottom image in Fig. 2a). Thus, we calculate the distances
between subsequence 1 & 3 followed by the distance between subse-
quence 2 and 4 etc. (shown by black colored cells in the matrix of
Fig. 2b). Note that, in each iteration the first distance is computed us-
ing the classical Euclidean distance formula and the other distances
are computed by using the incremental formula.

By looking at the cells of the matrix in Fig. 2b, we can see
in which iteration, the distance of two subsequences is calculated.
Different iterations are represented by different colors.

3.3 Complexity Analysis
The AAMP algorithm contains two loops. In the 1𝑠𝑡 loop (Line 6),
the distance between𝑇1,𝑚 and𝑇𝑘,𝑚 is computed by using the normal
Euclidean distance function in 𝑂(𝑚) time, thus in total, Line 6 is
executed in 𝑂(𝑚 × (𝑛 −𝑚)). In the nested loop (Lines 13 − 20), all
operations are done in 𝑂(1), so in total these operations are done in
𝑂((𝑛 −𝑚)2). Thus, the time complexity is 𝑂((𝑛 −𝑚)2) +𝑚 × (𝑛 −𝑚))
which is equivalent of 𝑂(𝑛 × (𝑛 −𝑚)). If 𝑛 >> 𝑚, then the time
complexity of AAMP can be written as 𝑂(𝑛2). But, if 𝑚 is very
close to 𝑛, i.e., 𝑚 = 𝑛 − 𝑐 for any small constant 𝑐, then the time
complexity is 𝑂(𝑛). The space needed for our algorithm is only the
array of matrix profile and some simple variables. Thus, the space
complexity is 𝑂(𝑛).

3.4 Extension of AAMP to p-Norm Distance
In this section, we extend the AAMP algorithm to the p-norm dis-
tance that is a more general form of distance computation than Eu-
clidean distance formula. The p-norm functions are used in Lebesgue

spaces (𝐿𝑃 ), which are useful in data analysis in physics, statistics,
finance, engineering, etc.

Let 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 be two time series subsequences, then their
p-norm distance (for 𝑝 > 1) is defined as:

𝐷𝑃𝑖, 𝑗 = 𝑝

√√
𝑚−1∑︁
𝑙=0

(𝑡𝑖+𝑙 − 𝑡 𝑗+𝑙 )𝑝 (9)

Notice that the Euclidean distance is a special case of p-norm
with 𝑝 = 2. The following lemma gives an incremental formula for
computing 𝑃𝑁𝑂𝑅𝑀𝑖, 𝑗 .

Lemma 2. Let 𝐷𝑃𝑖, 𝑗 be the p-norm distance of subsequences 𝑇𝑖,𝑚
and𝑇𝑗,𝑚 . Then, 𝐷𝑃𝑖, 𝑗 can be computed by using the p-norm distance
of subsequences 𝑇𝑖−1,𝑚 and 𝑇𝑗−1,𝑚 , denoted by 𝐷𝑃𝑖−1, 𝑗−1, as:

𝐷𝑃𝑖, 𝑗 =
𝑝
√︁
(𝐷𝑃𝑖−1, 𝑗−1)𝑝 − (𝑡𝑖−1 − 𝑡 𝑗−1)𝑝 + (𝑡𝑖+𝑚−1 − 𝑡 𝑗+𝑚−1)𝑝

Proof. The proof can be easily done in a similar way as that of
Lemma 1. Using Lemma 2, we can modify the AAMP algorithm to
compute the matrix profile with the p-norm distance. This can be
done just by modifying two lines in Algorithm 1: i) in Line 6 we
replace the Euclidean distance with p-norm distance between the
subsequences; i.e. 𝑇1,𝑚 and 𝑇𝑘,𝑚 ; ii) in Line 14, we incrementally
compute the p-norm distance using Lemma 2.

The time and space complexity of the AAMP algorithm for p-
norm is the same as that of AAMP with the Euclidean distance.

4 ACAMP: MATRIX PROFILE FOR
Z-NORMALIZED EUCLIDEAN DISTANCE

In this section, we propose an algorithm, called ACAMP, that com-
putes matrix profile based on the z-normalized Euclidean distance
and using the similar principle as AAMP, i.e., incremental distance
computation by using diagonal sliding windows.
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Algorithm 1: AAMP algorithm: matrix profile with Eu-
clidean distance

Input: 𝑇 : time series; 𝑛: length of time series;𝑚:
subsequence length

Output: 𝑃 : Matrix profile; 𝐼 : Matrix profile Indexes;
1 begin
2 for i=1 to n-m+1 do
3 P[i] = ∞ ⊲ initialize the matrix profile
4 I[i] = 1 ⊲ initialize the matrix profile indexes

5 for k=1 to n-m do
6 𝑑𝑖𝑠𝑡 = 𝐸𝑢𝑐_𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑇1:𝑚,𝑇𝑘+1:𝑚+𝑘 )2 ⊲ compute

square of the distance between 1𝑠𝑡 i.e.𝑇1:𝑚 and (𝑘 + 1)𝑡ℎ

i.e.𝑇𝑘+1:𝑚+𝑘 subsequences

7 if 𝑑𝑖𝑠𝑡 < 𝑃[1] then
8 𝑃[1] = 𝑑𝑖𝑠𝑡

9 𝐼 [1] = 𝑘 + 1;

10 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑘 + 1] then
11 𝑃[𝑘 + 1] = 𝑑𝑖𝑠𝑡

12 𝐼 [𝑘 + 1] = 1
// if 𝑘 + 1 == 𝑛 −𝑚 + 1 then

// B[1] = 𝑑𝑖𝑠𝑡 ⊲ if we are computing the distance
between 1𝑠𝑡 and last sub-sequence

13 for i=2 to (𝑛 −𝑚 + 1 − 𝑘) do
14 𝑑𝑖𝑠𝑡 = (𝑑𝑖𝑠𝑡 − (𝑡𝑖−1 − 𝑡𝑖−1+𝑘 )2 + (𝑡𝑖+𝑚−1 − 𝑡𝑖+𝑚+𝑘−1)2

15 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑖] then
16 𝑃[𝑖] = 𝑑𝑖𝑠𝑡

17 𝐼 [𝑖] = 𝑘 + 𝑖
18 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑖 + 𝑘] then
19 𝑃[𝑖 + 𝑘] = 𝑑𝑖𝑠𝑡

20 𝐼 [𝑖 + 𝑘] = 𝑖

// if 𝑖 + 𝑘 == 𝑛 −𝑚 + 1 then
// B[1, 1] = 𝑑𝑖𝑠𝑡 ⊲ if we are computing the

distance with last sub-sequence

21 for i=1 to n-m+1 do
22 𝑃[𝑖] =

√︁
𝑃[𝑖]

4.1 Incremental Computation of Z-Normalized
Euclidean Distance

Let us now explain how ACAMP computes the z-normalized Eu-
clidean distance incrementally. Let𝑇𝑖,𝑚 = ⟨𝑡𝑖 , . . . , 𝑡𝑖+𝑚−1⟩ and𝑇𝑗,𝑚 =
⟨𝑡 𝑗 , . . . , 𝑡 𝑗+𝑚−1⟩ be two subsequences of a time series𝑇 . In ACAMP,
we compute the z-normalized Euclidean distance between 𝑇𝑖,𝑚 and
𝑇𝑗,𝑚 by using the following five variables:

• 𝐴𝑖 =
∑𝑚−1
𝑙=0 𝑡𝑖+𝑙 : the sum of the values in 𝑇𝑖,𝑚 ;

• 𝐵 𝑗 =
∑𝑚−1
𝑙=0 𝑡 𝑗+𝑙 : the sum of the values in 𝑇𝑗,𝑚 ;

• Ai =
∑𝑚−1
𝑙=0 𝑡2

𝑖+𝑙 : the sum of the square of values in 𝑇𝑖,𝑚 ;
• Bj =

∑𝑚−1
𝑙=0 𝑡2

𝑗+𝑙 : the sum of the square of values in 𝑇𝑗,𝑚 ;

• Ci,j =
∑𝑚−1
𝑙=0 𝑡𝑖+𝑙 × 𝑡 𝑗+𝑙 : the product of values of𝑇𝑖,𝑚 and𝑇𝑗,𝑚 .

Note that all above variables can be computed incrementally,
when moving a sliding window from 𝑇𝑖,𝑚 to 𝑇𝑖+1,𝑚 . Given these

variables, the z-normalized Euclidean distance between two subse-
quences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 can be computed using the formula given by
the following lemma.

Lemma 3. Let 𝐷𝑍𝑖, 𝑗 be the z-normalized distance of subsequences
𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 . Then, 𝐷𝑍𝑖, 𝑗 can be computed as:

𝐷𝑍𝑖, 𝑗 =

√√√√√√√√√√√2𝑚
©«
1 −

Ci,j − 1
𝑚𝐴𝑖𝐵 𝑗√︂(

Ai − 1
𝑚𝐴2

𝑖

) (
Bj − 1

𝑚𝐵2
𝑗

) ª®®®®¬
(10)

Proof. Let 𝜇𝑖 and 𝜇 𝑗 be the mean of the values in the sequences
𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respectively. Also, let 𝜎𝑖 and 𝜎 𝑗 be the standard devi-
ation of the values in the subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respectively.
Then, the z-normalized Euclidean distance between 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is
defined as:

𝐷𝑍𝑖, 𝑗 =

√√
𝑚−1∑︁
𝑙=1

(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖
−
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)2
(11a)

𝜇𝑖 =
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡𝑖+𝑙 ; 𝜇 𝑗 =
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡 𝑗+𝑙 (11b)

𝜎𝑖 =

√√
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡2
𝑖+𝑙 − (𝜇𝑖 )2; 𝜎 𝑗 =

√√
1
𝑚

𝑚−1∑︁
𝑘=0

𝑡2
𝑗+𝑙 − (𝜇 𝑗 )2 . (11c)

We can write the square of 𝐷𝑍 as following:

𝐷𝑍 2
𝑖, 𝑗 =

𝑚−1∑︁
𝑙=0

(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖
−
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)2
=
𝑚−1∑︁
𝑙=0

(
(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖

)2
−

2
(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖

) (
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)
+

(
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)2
)

=
𝑚−1∑︁
𝑙=0

(
𝑡2
𝑖+𝑙 − 2𝑡𝑖+𝑙 𝜇𝑖 + (𝜇𝑖 )2

(𝜎𝑖 )2
−

2

(
𝑡𝑖+𝑙 𝑡 𝑗+𝑙 − 𝜇𝑖𝑡 𝑗+𝑙 − 𝑡𝑖+𝑙 𝜇 𝑗 + 𝜇 𝑗 𝜇𝑖

𝜎𝑖𝜎 𝑗
) +

𝑡2
𝑗+𝑙 − 2𝑡 𝑗+𝑙 𝜇 𝑗 + (𝜇 𝑗 )2

(𝜎 𝑗 )2

)

(12)

Let:
𝐴𝑖 = ∑𝑚−1

𝑙=0 𝑡𝑖+𝑙 ; 𝐵 𝑗 = ∑𝑚−1
𝑙=0 𝑡 𝑗+𝑙 ; A𝑖 = ∑𝑚−1

𝑙=0 𝑡2
𝑖+𝑙 ; B𝑗 =∑𝑚−1

𝑙=0 𝑡2
𝑗+𝑙 ; Ci,j =

∑𝑚−1
𝑙=0 𝑡𝑖+𝑙 𝑡 𝑗+𝑙 .

Then, we have:
𝜇𝑖 = 1

𝑚𝐴𝑖 ; 𝜇 𝑗 = 1
𝑚𝐵 𝑗 ; (𝜎𝑖 )2 = 1

𝑚A𝑖 − 1
𝑚2𝐴

2
𝑖
; (𝜎 𝑗 )2 = 1

𝑚B𝑗 −
1
𝑚2 𝐵

2
𝑗
.

Then, the square of the z-normalized Euclidean distance can be
written as:
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𝐷𝑍 2
𝑖, 𝑗 =

𝑚−1∑︁
𝑙=0

(
𝑡2
𝑖+𝑙 − 2𝑡𝑖+𝑙 𝜇𝑖 + (𝜇𝑖 )2

(𝜎𝑖 )2

− 2
(
𝑡𝑖+𝑙𝑏 𝑗+𝑙 − 𝜇𝑖𝑡 𝑗+𝑙 − 𝑡𝑖+𝑙 𝜇 𝑗 + 𝜇 𝑗 𝜇𝑖

𝜎𝑖𝜎 𝑗

)
+

𝑡2
𝑗+𝑙 − 2𝑡 𝑗+𝑙 𝜇 𝑗 + (𝜇 𝑗 )2

(𝜎 𝑗 )2

)
=
A𝑖 − 2𝐴2

𝑖
1
𝑚 + 𝐴2

𝑖

𝑚

1
𝑚A𝑖 − 1

𝑚2𝐴
2
𝑖

− 2 ×
Ci,j − 2

𝑚𝐴𝑖𝐵 𝑗 +
𝐴𝑖𝐵 𝑗

𝑚√︃
( 1𝑚A𝑖 − 1

𝑚2𝐴
2
𝑖
)( 1𝑚B𝑗 − 1

𝑚2 𝐵
2
𝑗
)
+

B𝑗 − 2𝐵2
𝑗
1
𝑚 +

𝐵2
𝑗

𝑚

1
𝑚B𝑗 − 1

𝑚2 𝐵
2
𝑗

= 2𝑚 − 2 ×
𝑚2Ci,j −𝑚𝐴𝑖𝐵 𝑗√︃

(𝑚A𝑖 −𝐴2
𝑖
)(𝑚B𝑗 − 𝐵2

𝑗
)

= 2𝑚
©«1 −

Ci,j − 1
𝑚𝐴𝑖𝐵 𝑗√︃

(A𝑖 − 1
𝑚𝐴2

𝑖
)(B𝑗 − 1

𝑚𝐵2
𝑗
)

ª®®¬

(13)

4.2 Algorithm
The pseudo-code of ACAMP is shown in Algorithm 2. In Line 4
in a loop, 𝑘 is iterated from 1 to 𝑛 −𝑚, and in each iteration the
z-normalized Euclidean distance is calculated between the subse-
quences which are 𝑘 points far from each other in the time series
(Lines 5 to 14). In each iteration, the distances are computed by
using the formula of Equation 10 that uses the five variables i.e., 𝐴,
𝐵, A, B and C. For each iteration of 𝑘, the distance between two
initial subsequence is calculated (i.e. the distance between 𝑇1,𝑚 and
𝑇1+𝑘,𝑚), by using the five variables in 𝑂(𝑚) time (see Lines 5 to
10). For the other subsequences, these variables and the distance are
incrementally computed in 𝑂(1) time. Note that in the algorithm, for
performance reasons we compare the square of the z-normalized
Euclidean distance of the subsequences (Line 10 and 21). At the end
of the algorithm (Lines 26 to 27), in a loop we convert the square
distances to the real distances.

The time and space complexity of ACAMP algorithm is same as
that of of AAMP algorithm, described in Section 3.3.

4.3 More Optimization of ACAMP
In the following section, we propose several optimizations for the
ACAMP Algorithm.

One possible optimization is to move the first calculation of vari-
ables 𝐴, A, 𝐵, and B (actually done in Lines 7 to 10) before the loop
(i.e., before Line 4). By doing this, firstly, we can avoid the redundant
computation of 𝐴 & A and 𝐵 and B. Then the calculation of distance
between the 1𝑠𝑡 and all other subsequences can be pre-computed.
Hence, we would just need to incrementally update these variables
in the loop (Lines 16 − 20).

Algorithm 2: ACAMP algorithm: matrix profile calculation
with z-normalized Euclidean distance

Input: T: time series; n: length of time series; m:
subsequence length

Output: P: Matrix profile; 𝐼 : Matrix profile Indexes;
1 begin
2 for i=1 to n-m+1 do
3 P[i] = ∞; I[i] = 1
4 for k=1 to n-m do
5 𝐴 = ∑𝑚−1

𝑙=0 𝑡1+𝑙 ⊲ sum of the values in 𝑇1,𝑚
6 𝐵 = ∑𝑚−1

𝑙=0 𝑡1+𝑘+𝑙 ⊲ sum of the values in 𝑇1+𝑘,𝑚
7 A = ∑𝑚−1

𝑙=0 𝑡21+𝑙 ⊲ sum of the square of values in 𝑇1,𝑚
8 B = ∑𝑚−1

𝑙=0 𝑡21+𝑘+𝑙 ⊲ sum of the square of values in
𝑇1+𝑘,𝑚

9 C = ∑𝑚−1
𝑙=0 𝑡1+𝑙 𝑡𝑘+𝑙 ⊲ product of values of 𝑇1,𝑚 and

𝑇1+𝑘,𝑚

10 𝑑𝑖𝑠𝑡 = 2𝑚

(
1 − C− 1

𝑚
𝐴𝐵√︃

(A− 1
𝑚
𝐴2)(B− 1

𝑚
𝐵2)

)
⊲ compute the

square of z-normalized distance
11 if 𝑑𝑖𝑠𝑡 < 𝑃[1] then
12 𝑃[1] = 𝑑𝑖𝑠𝑡 ; 𝐼 [1] = 𝑘 + 1;

13 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑘 + 1] then
14 𝑃[𝑘 + 1] = 𝑑𝑖𝑠𝑡 ; 𝐼 [𝑘 + 1] = 1
15 for i=2 to 𝑛 −𝑚 + 1 − 𝑘 do
16 𝐴 = 𝐴 − 𝑡𝑖−1 + 𝑡𝑖+𝑚−1;
17 𝐵 = 𝐵 − 𝑡𝑖−1+𝑘 + 𝑡𝑖+𝑚+𝑘−1;
18 A = A − 𝑡2

𝑖−1 + 𝑡
2
𝑖+𝑚−1;

19 B = B − 𝑡2
𝑖−1+𝑘 + 𝑡2

𝑖+𝑚+𝑘−1;
20 C = C − 𝑡𝑖−1 × 𝑡𝑖−1+𝑘 + 𝑡𝑖+𝑚−1 × 𝑡𝑖+𝑚+𝑘−1;

21 𝑑𝑖𝑠𝑡 = 2𝑚

(
1 − C− 1

𝑚
𝐴𝐵√︃

(A− 1
𝑚
𝐴2)(B− 1

𝑚
𝐵2)

)
22 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑖] then
23 𝑃[𝑖] = 𝑑𝑖𝑠𝑡 ; 𝐼 [𝑖] = 𝑘 + 𝑖
24 if 𝑑𝑖𝑠𝑡 < 𝑃[𝑖 + 𝑘] then
25 𝑃[𝑘 + 𝑖] = 𝑑𝑖𝑠𝑡 ; 𝐼 [𝑘 + 𝑖] = 𝑖

26 for i=1 to n do
27 𝑃[𝑖] =

√︁
𝑃[𝑖] ⊲ compute the z-normalized distance

from its square

We can further optimize ACAMP by not comparing the square of
z-normalized distance in Lines 15, 17, 26 and 28 in Algorithm 2, but
by comparing 𝐹𝑖, 𝑗 defined as follows:

𝐹𝑖, 𝑗 =
(𝐴𝑖𝐵 𝑗 −𝑚Ci,j) × |𝐴𝑖𝐵 𝑗 −𝑚Ci,j |

(A𝑖 − 1
𝑚𝐴2

𝑖
)(B𝑗 − 1

𝑚𝐵 𝑗 )
, (14)

We can easily show that 𝐷𝑍𝑖, 𝑗 > 𝐷𝑍𝑖,𝑘 if and only if 𝐹𝑖, 𝑗 > 𝐹𝑖,𝑘 .
In the formula of 𝐹𝑖, 𝑗 , there is no square root operation, and its
computation takes less time than that of 𝐷𝑍𝑖, 𝑗 . Thus, for comparing
the z-normalized Euclidean distance of subsequences, we can simply
compare their 𝐹𝑖, 𝑗 . Then in Line 21 of the algorithm, the following
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equation can be used for computing the z-normalized Euclidean
distance 𝐷𝑍𝑖, 𝑗 from 𝐹𝑖, 𝑗 :

𝐷𝑍𝑖, 𝑗 = 2𝑚 + 2 × sign(𝐹𝑖, 𝑗 ) ×
√︃
|𝐹𝑖, 𝑗 | (15)

5 PERFORMANCE EVALUATION
In this section, we compare the execution time of our algorithms
AAMP and ACAMP with the state-of-the-art matrix profile algo-
rithms STOMP, SCRIMP and SCRIMP++ [8]. We also evaluate the
optimized version of ACAMP (using the optimizations proposed
in Section 4.3) called as ACAMP-Optimized. We first describe the
experimental setup, the datasets used for the performance evaluation
and then present the results of the experiments.

5.1 Setup
We implemented our algorithms in MATLAB 1. For STOMP2 3,
SCRIMP4 and Scrimp++4, we used the Matlab code available from
[10] using the step size of PreSCRIMP = 0.25. The evaluation
and tests were carried out on a off-the-shelf computer with In-
tel ®Core(TM) ™i7-8850H CPU @ 2.60 GHz ×8 processors, on
Ubuntu 18.04 LTS and 32 GB RAM with the R2019A version of
Matlab.

5.1.1 Datasets. The first dataset corresponds to spectrums of
680 dimensions, representing a protein rate measured on 10 differ-
ent products: rapeseed (CLZ), corn gluten (CNG), sun flower seed
(SFG), grass silage (EHH), full fat soya (FFS), wheat (FRG), sun
flower seed (SFG), animal feed (ANF), soyameal set(representsr and
whey (MPW). The complete dataset represents 4075 time series of
680 values (680 elements per time series).

The second real world dataset corresponds to time series of 500
dimensions which have been measured by attaching accelerometer at
the neck of some sheep. Acelerometers captured 3-axial acceleration
at a constant rate of 100Hz. The complete dataset represents 8532
time series of 500 values.

We have also done experiments on several real world datasets
from the UCR Time Series Classification Archive [11], such as
CinCECGTorso, EOGVerticalSigna, EOGHorizontalSignal, Arrow-
Head, etc.

5.2 Execution time
The first experiment on execution time is performed by keeping the
time series length (𝑛) fixed, and varying the subsequence length (𝑚;
plotted along 𝑋−axis). For this experiment, we used the protein and
sheep datasets. For the protein dataset, we have used the first 100
time series and concatenated them to generate a single time series of
68000 (100× 680) elements. In the case of the sheep dataset, we took
the first 100 time series and concatenated them to generate a single
time series of 50000 (100 × 500) elements).

The execution times of the six algorithms are plotted in Fig. 3a and
3b using the protein and sheep datasets respectively. As seen, the ex-
ecution time of all algorithms decreases with increasing subsequence

1Our code and data are accessible at: https://sites.google.com/view/aamp-and-
acamp/home

2https://sites.google.com/view/mstamp/
3https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
4https://sites.google.com/site/scrimpplusplus/

length (𝑚). On both databases, AAMP and ACAMP-Optimized out-
perform other algorithms. Until 𝑚 = 8000, ACAMP is better than
STOMP, but for higher values STOMP behaves better. For very high
values of 𝑚 (e.g., when 𝑚 is close to 𝑛), the execution time of all
algorithms gets almost the same, because in these cases there are few
subsequences in the time series. Notice that in practice the subse-
quence size is not very high (e.g., less than 4000), and in these cases
the performance of AAMP and ACAMP-Optimized is significantly
better than the state-of-the-art algorithms.

The second experiment is performed by keeping a fixed subse-
quence length 𝑚 = 256 (in accordance with the experiments in
related work, e.g. [1] and [2]), and varying the length of time se-
ries, i.e., 𝑛. The results for the two datasets are shown in Fig.3c and
3d. We observe that the execution time of all algorithms increases
linearly with the increase of time series length. AAMP and ACAMP-
Optimized algorithms outperform the state-of-the-art algorithms, and
their performance difference increases significantly by increasing
𝑛. Thus, the bigger is the time series, the higher is the performance
gain of our AAMP and ACAMP-Optimized algorithms.

5.3 Discord discovery
The AAMP and ACAMP algorithms are capable to detect the dis-
cords (anomalies) from the time series like other matrix profile
based algorithms such as STOMP, SCRIMP and SCRIMP++. The
matrix profile generated by ACAMP is exactly the same as the one
generated by STOMP, SCRIMP and SCRIMP++, as all of these
techniques use the z-normalized Euclidean distance. But, AAMP
uses non-normalized Euclidean distance, thus the detected discords
can be different. Hence, depending on the user requirements and
the domains of applications, the techniques from both groups can
be useful. An example is shown in Fig. 5a by using two real ECG
datasets [2]. The visible discords (of subsequence length 50) are
marked by red color in these time series. It can be seen that the
anomaly or unusual pattern existing in the first time series can be
detected by AAMP, whereas SCRIMP++ (or any of the other z-
normalized based algorithm) was unable to detect it. The reason is
due to z-normalization by SCRIMP++. AAMP is able to take into
account the range of values of the matches with respect to the range
of values of the given subsequence. This is why AAMP does not find
a close match for this unusual subsequence (it’s range of values is
mostly less than −2). In the second time series (top right image in
Fig. 5a) another similar situation is presented where AAMP was able
to correctly detect the discord but SCRIMP++ failed to locate it.

Figure 4 shows examples of time series from different UCR
datasets, and the matrix profiles generated by AAMP and STOMP
algorithms for the time series. In each time series there is a visi-
ble anomaly (an unusual pattern), which is clearly detected by the
AAMP algorithm, i.e., as high value point in the matrix profile.
But, in the matrix profile generated by the STOMP algorithm, the
anomalies are not visible or hardly distinguishable from other subse-
quences.

From the above mentioned experimental evaluations, we can con-
clude that our proposed AAMP algorithm shows better performance
in detecting anomalies (and also motifs) in certain domain of appli-
cations, compared to the z-normalization based algorithms such as
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Figure 3: The execution times of six algorithms with increasing the subsequence length (𝑚): a) Execution time of the six algorithms on
a time series of length 68000 (protein dataset). b) Execution time of the six algorithms on a time series of length 50000 (sheep dataset).
The execution time of six algorithms are plotted with the increase of time series length (𝑛): c) Execution time of the six algorithms on
variable time series length (protein dataset) with𝑚 = 256. d) execution time of the six algorithms on variable time series length (sheep
dataset) with𝑚 = 256.

STOMP and SCRIMP++. However, in certain domain of applica-
tions, z-normalization based algorithms are more useful. Then in
such cases, it is better to use the ACAMP-optimized algorithm which
has lower execution time than the state-of-the-art techniques, i.e.
STOMP, SCRIMP and SCRIMP++, and is able to compute exactly
the same matrix profile as the one computed by these algorithms.

5.4 Pros and Cons of Z-normalized over
Non-normalized distance

There are pros & cons of both the z-normalized and non-normalized
Euclidean distances. In this section, we discuss them.

5.4.1 Range of the matches. The techniques such as STOMP,
SCRIMP, SCRIMP++ and ACAMP are able to find the matches
without taking into account the range of values of the matches. These

techniques only consider the shape of the subsequences (because
of z-normalization), whereas a non-normalized Euclidean distance
based technique, e.g., AAMP, can find the matches from the same
range of values as the given subsequence while taking into account
its shape as well. Some examples of the matches obtained by STOMP
and AAMP are shown in Fig. 1b. Hence, the z-normalization based
techniques are capable of finding similar shape matches from any
range of values, and can sometimes provide better matches than
non-normalized techniques (see an example in Fig. 6). But when the
range of values of the matches is important, then a technique such
as AAMP is more useful.

5.4.2 Zero standard deviation. It is a quite bothersome problem
that the z-normalized distance of two subsequences returns infinity
when the standard deviation of one of the subsequences is zero
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(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Top: Time series from CinCECGTorso dataset. The discord is visible in it. Middle: the matrix profile, obtained by
STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b) Time series from EOGVerticalSignal dataset and
corresponding matrix profile by STOMP and AAMP algorithms. (c) Time series from CinCECGTorso dataset (d) Time series from
CinCECGTorso dataset (e) Time series from EOGHorizontalSignal dataset (f) Time series from EOGVerticalSignal dataset
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Figure 5: (a) Top: two time series from real ECG dataset. The visible discords in these time series are marked by red color. Middle: the
matrix profile, obtained by SCRIMP++ algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b) Top: the longitude
and height time series of Seismic dataset (outliers are marked by red color); Bottom: the matrix profile obtained by AAMP algorithm.
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Figure 6: Top: First two query sub-sequences from protein and
the third sub-sequence from sheep dataset. Middle: Better near-
est neighbors, obtained by STOMP. Bottom: The nearest neigh-
bors, obtained by AAMP algorithm.

(because of division by zero). This can happen when the signal of
a subsequence remains stable (i.e., all the values are same in the
subsequence). This kind of situation is quite frequent in real datasets,
e.g., during the periods when there is no noticeable activities. This
problem does not exist for AAMP algorithm (based on the non-
normalized Euclidean distance), because no division is done in its
distance formula. An example is shown in Fig. 5b by using a real
seismic dataset where the values of longitudes and heights are plotted.
It can be visible that there are several places where the signals remain
stable, hence the standard deviation of the subsequences (e.g. of size
50) would become zero. In these cases, we see that AAMP is able
to detect the outliers by generating the matrix profile (see bottom
images of Fig. 5b). But, the z-normalized based techniques can not
find these anomalies.

6 RELATED WORK
Matrix profile has been recently proposed as an efficient technique
for detecting motifs and discords in time series [7, 12]. In [1], Yeh
et al. introduced the theoretical foundations of matrix profile and
proposed a first algorithm, called STAMP for computing the matrix
profile over a time series. It uses a similarity search algorithm, called
MASS [1] that computes z-normalized Euclidean distance between
two subsequences by using the Fast Fourier Transform (FFT). In [2],
Zhu et al. proposed an algorithm, called STOMP, that is faster than
STAMP. The STOMP algorithm is similar to STAMP but uses highly
optimized nested loop algorithm by applying repeated calculation
of distance profiles in the inner loop. However, while STAMP must
evaluate the distance profiles in random order (to allow its anytime
behavior), STOMP performs an ordered search. STOMP exploits
the locality of these searches, and reduces the time complexity by

a factor of 𝑂(𝑙𝑜𝑔𝑛). In [8], the authors proposed an extension of
STOMP, called SCRIMP++ (also an anytime algorithm), that usu-
ally converges faster than STOMP for large subsequence lengths. In
[13], Zimmerman et al. proposed an extension of the GPU-based
version of STOMP algorithm [2] by exploiting several novel insights
for motif discovery envelope, using a scalable framework which
can be deployed in commercial cloud based GPU clusters. To the
best of our knowledge, almost all matrix profile algorithms have
been developed for z-normalized Euclidean distance. In this paper,
we proposed AAMP for the non-normalized Euclidean distance.
We also proposed two algorithms for the z-normalized case, i.e.,
ACAMP and ACAMP-Optimized, that are significantly faster than
the state of the art algorithms working based on the z-normalized
distance. The ACAMP and ACAMP-Optimized algorithms are de-
signed based on an efficient incremental technique that does not
need FFT calculations.

7 CONCLUSION
In this paper, we addressed the problem of matrix profile computa-
tion for a general class of Euclidean distances. We first proposed an
efficient algorithm called AAMP for computing matrix profile for
the non-normalized Euclidean distance. Then, we extended our algo-
rithm for the p-norm distance, which is a general form of Euclidean.
Then, we proposed ACAMP and its optimized version ACAMP-
Optimized that use the same principle as AAMP, but for the case of
z-normalized Euclidean distance. Our algorithms are exact, anytime,
incrementally maintainable, and can be implemented easily using
different languages. To evaluate the performance of our algorithms,
we implemented them, and compared their performance with the
baseline algorithms such as STOMP, SCRIMP, SCRIMP++. The
results show the efficiency of AAMP and ACAMP-Optimized al-
gorithms for computing matrix profile based on z-normalized and
non-normalized Euclidean distances. They also illustrate the utility
of the matrix profile generated by the AAMP algorithm for detecting
anomalies in some daatsets, for which the state-of-the-art algorithms
are not useful. Overall, we can conclude that both z-normalized and
non-normalized based matrix profiles are required for knowledge
extraction in a wide range of applications. In this paper, we proposed
efficient techniques for both of them.
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SUPPLEMENTARY MATERIALS
S.1 Incremental Computation of Z-Normalized

Euclidean Distance - Proof
Here, we present the proof of Lemma 3 and Equation 12 that gives
an incremental formula for computing matrix profile by using z-
normalized Euclidean distance.

Proof. Let 𝜇𝑖 and 𝜇 𝑗 be the mean of the values in the sequences
𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respectively. Also, let 𝜎𝑖 and 𝜎 𝑗 be the standard de-
viation of the values in the subsequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 respec-
tively. Then, the z-normalized Euclidean distance between the sub-
sequences 𝑇𝑖,𝑚 and 𝑇𝑗,𝑚 is defined as:

𝐷𝑍𝑖, 𝑗 =

√√
𝑚−1∑︁
𝑙=1

(
𝑡𝑖+𝑙 − 𝜇𝑖

𝜎𝑖
−
𝑡 𝑗+𝑙 − 𝜇 𝑗

𝜎 𝑗

)2
(16)

where

𝜇𝑖 =
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡𝑖+𝑙 ; 𝜇 𝑗 =
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡 𝑗+𝑙 (17)

and

𝜎𝑖 =

√√
1
𝑚

𝑚−1∑︁
𝑙=0

𝑡2
𝑖+𝑙 − (𝜇𝑖 )2; 𝜎 𝑗 =

√√
1
𝑚

𝑚−1∑︁
𝑘=0

𝑡2
𝑗+𝑙 − (𝜇 𝑗 )2 . (18)

We can write the square of 𝐷𝑍 as following:

𝐷𝑍 2
𝑖, 𝑗

= ∑𝑚−1
𝑙=0

(
𝑡𝑖+𝑙−𝜇𝑖

𝜎𝑖
− 𝑡 𝑗+𝑙−𝜇 𝑗

𝜎 𝑗

)2
= ∑𝑚−1

𝑙=0

((
𝑡𝑖+𝑙−𝜇𝑖

𝜎𝑖

)2
− 2

(
𝑡𝑖+𝑙−𝜇𝑖

𝜎𝑖

) (
𝑡 𝑗+𝑙−𝜇 𝑗

𝜎 𝑗

)
+

(
𝑡 𝑗+𝑙−𝜇 𝑗

𝜎 𝑗

)2)
= ∑𝑚−1

𝑙=0

(
𝑡2
𝑖+𝑙−2𝑡𝑖+𝑙 𝜇𝑖+(𝜇𝑖 )

2

(𝜎𝑖 )2
− 2( 𝑡𝑖+𝑙 𝑡 𝑗+𝑙−𝜇𝑖𝑡 𝑗+𝑙−𝑡𝑖+𝑙 𝜇 𝑗+𝜇 𝑗 𝜇𝑖𝜎𝑖𝜎 𝑗

)
+

𝑡2
𝑗+𝑙−2𝑡 𝑗+𝑙 𝜇 𝑗+(𝜇 𝑗 )

2

(𝜎 𝑗 )2
)

(19)

Let

𝐴𝑖 =
∑𝑚−1
𝑙=0 𝑡𝑖+𝑙 ; 𝐵 𝑗 =

∑𝑚−1
𝑙=0 𝑡 𝑗+𝑙 ; A𝑖 =

∑𝑚−1
𝑙=0 𝑡2

𝑖+𝑙 ;
B𝑗 =

∑𝑚−1
𝑙=0 𝑡2

𝑗+𝑙 ; Ci,j =
∑𝑚−1
𝑙=0 𝑡𝑖+𝑙 𝑡 𝑗+𝑙 .

(20)

Then, we have:

𝜇𝑖 = 1
𝑚𝐴𝑖 , 𝜇 𝑗 = 1

𝑚𝐵 𝑗 (21)

(𝜎𝑖 )2 = 1
𝑚A𝑖 − 1

𝑚2𝐴
2
𝑖
, (𝜎 𝑗 )2 = 1

𝑚B𝑗 − 1
𝑚2 𝐵

2
𝑗
. (22)

Then, the z-normalized Euclidean distance can be written as:

𝐷𝑍 2
𝑖, 𝑗

= ∑𝑚−1
𝑙=0 ( 𝑡

2
𝑖+𝑙−2𝑡𝑖+𝑙 𝜇𝑖+(𝜇𝑖 )

2

(𝜎𝑖 )2

−2
(
𝑡𝑖+𝑙𝑏 𝑗+𝑙−𝜇𝑖𝑡 𝑗+𝑙−𝑡𝑖+𝑙 𝜇 𝑗+𝜇 𝑗 𝜇𝑖

𝜎𝑖𝜎 𝑗

)
+

𝑡2
𝑗+𝑙−2𝑡 𝑗+𝑙 𝜇 𝑗+(𝜇 𝑗 )

2

(𝜎 𝑗 )2
)

= A𝑖−2𝐴2
𝑖

1
𝑚
+
𝐴2
𝑖

𝑚
1
𝑚
A𝑖− 1

𝑚2𝐴
2
𝑖

− 2 × Ci,j− 2
𝑚
𝐴𝑖𝐵 𝑗+

𝐴𝑖𝐵𝑗

𝑚√︃
( 1
𝑚
A𝑖− 1

𝑚2𝐴
2
𝑖
)( 1
𝑚
B𝑗− 1

𝑚2 𝐵
2
𝑗
)
+

B𝑗−2𝐵2
𝑗
1
𝑚
+
𝐵2
𝑗

𝑚
1
𝑚
B𝑗− 1

𝑚2 𝐵
2
𝑗

= 2𝑚 − 2 × 𝑚2Ci,j−𝑚𝐴𝑖𝐵 𝑗√︃
(𝑚A𝑖−𝐴2

𝑖
)(𝑚B𝑗−𝐵2

𝑗
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= 2𝑚

(
1 − Ci,j− 1

𝑚
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𝑚
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𝑚
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𝑗
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(23)

As mentioned in Subsection 4.4.1, by taking

𝐹𝑖, 𝑗 =
(𝐴𝑖𝐵 𝑗 −𝑚Ci,j) × |𝐴𝑖𝐵 𝑗 −𝑚Ci,j |

(A𝑖 − 1
𝑚𝐴2

𝑖
)(B𝑗 − 1

𝑚𝐵 𝑗 )
, (24)

we have 𝐷𝑍𝑖, 𝑗 = 2𝑚 + 2sign(𝐹𝑖, 𝑗 ) ×
√︁
|𝐹𝑖, 𝑗 | and we can use the

following equivalence in our algorithm:

𝐷𝑍𝑖, 𝑗 > 𝐷𝑍𝑖,𝑘 ⇔ 𝐹𝑖, 𝑗 > 𝐹𝑖,𝑘 .

S.2 Shapelet discovery
Here we explain how shapelets can be discovered by matrix profile,
and then show examples of shapelets discovered by z-normalized
and non-normalized matrix profile algorithms from real datasets.

Consider two time series 𝐴 and 𝐵, having class 1 and 0 as their
corresponding class labels. We compute the matrix profiles of 𝐴 an
𝐵, denoted by 𝑃𝐴 and 𝑃𝐵 , and also their joint matrix profiles 𝑃𝐴𝐵
and 𝑃𝐵𝐴 (see the definition of joint matrix profile in Section 2). The
shapelets can be discovered by calculating the difference in heights
of 𝑃𝐴𝐵 v/s 𝑃𝐴 (or 𝑃𝐵𝐴 v/s 𝑃𝐵) which is then used as the indicator of
good shapelet candidates. The idea here is that if a discriminating
pattern is present in 𝐴 and not in 𝐵, then it is highly probable that we
will see a “bump" at the location of this pattern in 𝑃𝐴𝐵 (the same is
true for 𝑃𝐵𝐴 also). Hence, when an element-wise difference (denoted
by U = |𝑃𝐴 − 𝑃𝐴𝐵 |) is calculated between 𝑃𝐴 and 𝑃𝐴𝐵 vectors, we
will find high values at those locations where such discriminating
patterns (or subsequences) exist in 𝐴 (same is true for 𝐵, if we look
into 𝑃𝐵 and 𝑃𝐵𝐴).

Using time series from the ArrowHead dataset of UCR Archive,
in Fig. 7 (b) and (d) we show the curve of 𝑃𝐴 and 𝑃𝐴𝐵 along with
the difference between 𝑃𝐴 and 𝑃𝐴𝐵 plotted in Fig. 7 (c) and (e) for
the STOMP and AAMP algorithms respectively. A significant differ-
ence (quantified by a threshold, shown in dashed line) is observed
between the heights of 𝑃𝐴 and 𝑃𝐴𝐵 curves, which intrinsically lo-
cates the occurrence of good candidate shapelets patterns (detected
by STOMP and AAMP algorithms). These difference curves can
serve to locate the patterns that only occur in one of the two time
series (i.e., good candidates for shapelets). This experiment is per-
formed by randomly choosing 10 time series and concatenating them.
The execution times required by AAMP to compute 𝑃𝐴 and 𝑃𝐴𝐵 are
0.05 and 0.17 seconds respectively.

Using time series from the ArrowHead dataset of UCR Archive,
in Fig. 7 (b) and (d) we show the curve of 𝑃𝐴𝐴 and 𝑃𝐴𝐵 along with
the difference between 𝑃𝐴𝐴 and 𝑃𝐴𝐵 plotted in Fig. 7 (c) and (e) for
the STOMP and AAMP algorithms respectively. A significant differ-
ence (quantified by a threshold, shown in dashed line) is observed
between the heights of 𝑃𝐴𝐴 and 𝑃𝐴𝐵 curves, which intrinsically lo-
cates the occurrence of good candidate shapelets patterns (detected
by STOMP and AAMP algorithms). These difference curves can
serve to locate the patterns that only occur in one of the two time
series (i.e., good candidates for shapelets). This experiment is per-
formed by randomly choosing 10 time series and concatenating them.
The execution times required by AAMP to compute 𝑃𝐴𝐴 and 𝑃𝐴𝐵
are 0.05 and 0.17 seconds respectively.
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Figure 7: The time series shapelet discovery: (a) Two time series
𝑇𝐴 and 𝑇𝐵 formed by concatenating individual time series of
class 1 and 0 respectively of the ArrowHead dataset. (b) (d) The
matrix profile 𝑃𝐴𝐴 and 𝑃𝐴𝐵 by STOMP and AAMP algorithms
respectively. (c) (e) The difference between 𝑃𝐴𝐵 and 𝑃𝐴𝐴, by
STOMP and AAMP algorithms respectively.

S.3 Better performance of Z-Normalized distance
over non-normalized distance

In the following Fig.8, 9, 10, 11, we have shown some interesting
examples where the z-normalized distance has performed better
than non normalized distance based matrix profile. The images in
Fig.8, shows that z-normalized distance is able to find more possible
locations of outliers by creating sharper peaks of matrix profile curve,
compared to AAMP based matrix profile.

Whereas, from examples shown in Fig.9, we can visualize that z-
normalized based matrix profiles (by STOMP algorithm) are able to
show better and relevant possible outliers by detecting multiple and
sharper peaks (marked by red circles), compared to AAMP based
matrix profile. The detection of multiple possible outliers location

by z-normalized based matrix profile would help the data analyst
and domain experts to manually validate it’s legitimacy as they will
have more options of possible outliers.

In Fig.10, 11 also, we show several matrix profile plots where
z-normalized based matrix profile is able to find different and extra
location of possible outliers (compared to non-normalized based
matrix profile). Some time these detected outliers by z-normalized
based matrix profile are relevant and some times they are irrelevant.
But, it will always give a handful of extra and different possible
outliers locations for the domain experts.
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(a) (b) (c)

Figure 8: (a, b, c) Top: Time series from PigAirwayPressure, InlineSkate, InsectEPGSmallTrain dataset respectively. Middle: the
matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 9: (a, b, c, d, e) Top: Various time series from EthanolLevel dataset. Middle: the matrix profile, obtained by STOMP algorithm;
Bottom: The matrix profile, obtained by AAMP algorithm. (f) Time series from PigAirwayPressure dataset and corresponding matrix
profile by STOMP and AAMP. These matrix profile plots shows that in several cases, the z-normalized based (STOMP) algorithm is
able to find more clear (sharper peaks, marked by red circles) detection of outliers than AAMP.
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(a) (b) (c)

(d) (e) (f)

Figure 10: (a, b, c) Top: Various time series from InlineSkate dataset. Middle: the matrix profile, obtained by STOMP algorithm;
Bottom: The matrix profile, obtained by AAMP algorithm. (f) Time series from EthanolLevel dataset and corresponding matrix profile
by STOMP and AAMP.
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(a) (b) (c)

(d) (e) (f)

Figure 11: (a, b, c) Top: Time series from MixedShapesRegularTrain, PigAirwayPressure, EOGVerticalSignal dataset. The discord is
visible in it. Middle: the matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (d,
e, f) Time series from EthanolLevel dataset and corresponding matrix profile by STOMP and AAMP algorithm respectively.
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