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Abstract. In general, underwater images suffer from color distortion and low
contrast, because light is attenuated and backscattered as it propagates through
water (differently depending on wavelength and on the properties of the water
body). An existing simple degradation model (similar to atmospheric image “haz-
ing” effects), though helpful, is not sufficient to properly represent the underwater
image degradation because there are unaccounted for and non-measurable factors
e.g. scattering of light due to turbidity of water, reflective characteristics of turbid
medium etc. We propose a deep learning-based architecture to automatically sim-
ulate the underwater effects where only a dehazing-like image formation equation
is known to the network, and the additional degradation due to the other unknown
factors if inferred in a data-driven way. We only use RGB images (because in
real-time scenario depth image is not available) to estimate the depth image.
For testing, we have proposed (due to the lack of real underwater image datasets)
a complex image formation model/equation to manually generate images that
resemble real underwater images (used as ground truth). However, only the clas-
sical image formation equation (the one used for image dehazing) is informed to
the network. This mimics the fact that in a real scenario, the physics are never
completely known and only simplified models are known. Thanks to the ground
truth, generated by a complex image formation equation, we could successfully
perform a qualitative and quantitative evaluation of proposed technique, com-
pared to other purely data driven approaches. For code and dataset, see: https:
//github.com/anoynymREVIEW/underwater_simulation.git

Keywords: Under water image, Dehazing, Denoising, Image Simulation, Image-
to-Image translation, Encoder-Decoder, DenseNet, Pix2Pix, Cycle GAN.

1 Introduction

Underwater images lack contrast and contain a different color palette from usual natu-
ral images. This occurs because the light spectrum is selectively absorbed and scattered
(mainly due to the floating particles in the water) during the propagation of light in
water. The attenuation of light highly depends on the wavelength, which varies with re-
spect to the water type, depth and the distance which light has to travel to illuminate the
object [1]. Underwater images also depend on the 3D structure of the scene and floating
particles in the water, which makes it very difficult to model the underwater scattering
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phenomena. The wavelength-dependent attenuation of light causes color distortions and
are directly related to the objects’ distances from the source of light. Furthermore, light
scattering introduces an additional factor into the image which inherently decreases
the image’s contrast. Light scattering is directly related to the object’s distance from the
light’s source, which explains why these phenomena cannot be easily globally corrected
[2]. Moreover, the attenuation parameters of the water medium are highly affected by
seasonal, geographical and climate variations. These variations of attenuation parame-
ters were categorized into 10 categories by Jerlov [3].
Furthermore, underwater image formation also gets affected by the scattering of light
due to reflective characteristics of the turbid medium, among others. More importantly,
these factors are not measurable and difficult to incorporate within a mathematical
model. In this work, we propose an end-to-end deep learning-based physics-informed
model to simulate the underwater effects. A classical image formation equation is hard
coded into the network, and it estimates additional non-measurable and complex factors
which influence the underwater image degradation. We have only used clean RGB at-
mospheric images and have estimated the depth image (the depth values of each image
pixel) from it. Because in a real scenario, we do not have the access to each pixel’s depth
values (because we need to use RGB-D cameras, e.g. Microsoft Kinect, since classical
RGB-D cameras cannot be used for underwater imaging). The estimated depth image is
fed to the physical model part of the network.
Due to the inherent difficulty of obtaining pairs of real-world clean/degraded images
in an underwater context, we propose in addition a complex image formation mod-
el/equation to manually generate images that resemble real-world underwater images.
The generated images are used as ground truth for our experiments. This work is a
proof of concept, where the objective is to simulate images as close as possible to the
observed data (which we manually generate using our proposed physical model, men-
tioned in Equation (6)), while capturing unaccounted and unmeasurable physical effects
in a data-driven manner. A rich dataset of clean-degraded image pairs is created to train
a neural network model that will be used as a simulator to generate varied underwater
images, parameterized by a few user given parameters.
This way, once trained, our model can be effectively generate realistic rare underwa-
ter images and provide an efficient physically explainable emulator. To the best of our
knowledge, there are no other research works on the simulation of underwater images.
The proposed physics-data-driven method to simulate under water image degradation
effects using a deep neural network is a novel technique. The contribution of this work
are as follows: i) We propose a complex image formation model/equation to manually
generate images that resemble real underwater images (see section 3) which is used as
ground truth. ii) Then we propose a deep neural network based architecture to simulate
the complex under water imaging effect by informing the network about the classical
image degradation model (see section 4), to make it interpretable and able to capture
missing degradation in a data-driven way. We have further analyzed the influence and
effectiveness of each block on the overall performance of the network, and compared it
to simulators obtained from a number of other data-driven deep learning models.
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2 Related Work

In this section, we discuss the literature related to the correction of haze-related degra-
dation of terrestrial images, which has a thin connection with underwater image degra-
dations. In case of terrestrial images, in the presence of fog, haze or turbulence, the
transmitting light gets diffracted and scattered while passing through the atmosphere
[4]. Many image dehazing techniques in the literature [5], [6], [7], [8], [9], [10] take as
input a single hazy image and estimate the unknown distance map, from which the clear
image of the scene is generated. Researchers have proposed several priors in order to
solve the ill-posed inverse problem. It is assumed that transmission is color independent
for terrestrial images but that is not the case for underwater images. One of such priors
is the so-called “Dark Channel Prior (DCP)” [6] [7] which assumes that within small
image patches, at least one pixel has a low value in some color channel. This minimal
value is used to estimate the distance.
This concept has been widely used in the processing of underwater images [11], [12],
[13], [14], [15]. Although, it works well in case of terrestrial images, the same under-
lying assumption does not hold in many underwater scenarios. For example, a bright
sand foreground has high values in all color channels and is often mistaken to have low
transmission despite being close to the camera. Because of these reasons, [16] proposed
a depth estimation method for underwater scenes which is based on image blurriness
and light absorption. Although such prior is physically valid, it has limited efficiency in
texture-less areas. There are a few more works in the literature which focus on percep-
tually pleasing results e.g. [17], [18], [19] but have not shown color consistency which
is required for scientific measurements. There have been only few number of attempts
of using deep neural networks [20], [21], [22], [23] for the restoration of terrestrial haze
images and even less for underwater images. In [24], authors estimate the ambient light
and transmission in underwater images by using a classical convolution neural network
(CNN) architecture which is further used to dehaze underwater images.
The simulation of underwater images has strong resemblance with the task of Image-to-
Image (I2I) translation which aims to learn a mapping between different visual domains.
This task is challenging for two main reasons. First, it is either difficult to collect aligned
training image pairs (e.g. day scene ↔ night scene), or they simply do not exist (e.g.
artwork ↔ real photo). Secondly, many such mappings are inherently multi-modal i.e.
a single input may correspond to multiple possible outputs. Several techniques exists in
the literature to address these issues. The Pix2Pix architecture [25] applies conditional
generative adversarial networks to I2I translation problems by using paired image data.
There are a number of recent works [26], [27], [28], [29], [25] which are based on
the paired training data for learning I2I translation. These techniques produces a single
output, conditioned on the given input image. To train with unpaired data, CycleGAN
[30], DiscoGAN [31] leverage cycle consistency to regularize the training. Another set
of unpaired I2I translation techniques either generate one (e.g. UNIT [28]) or many
output images (e.g. MUNIT [32] and DRIT [33]) from a given input images, also by
leveraging cycle consistency to regularize the training.
On the other hand, BicycleGAN [34] (only applicable to problems with paired train-
ing data) enforces a bijection mapping between the latent and target space to tackle the
mode collapse problem. Contrary to all these approaches in the literature, the proposed
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neural network architecture incorporates a physics-informed classical image degrada-
tion model to drive the network and helps him simulate more complex image degrada-
tion model whose formulation and related parameters are unknown.

3 Image Formation Model

3.1 Classical Simulation Model

In this section, we describe the widely used atmospheric image formation model devel-
oped in [35]. For each color channel c ∈ {R,G,B}, the image intensity at each pixel
is composed of two components: the attenuated signal and the veiling light.

Ic(x) = tc(x)Jc(x) + (1− tc(x)).Ac (1)

where bold letters denotes vectors, x is the pixel coordinate, Ic is the acquired image
value in the color channel c, tc is the transmission of the color channel, and Jc is the
object radiance or clean image. The global veiling-light/atmospheric light component
Ac is the scene value in the areas with no objects (tc = 0,∀c ∈ {R,G,B}). The
transmission depends on the object’s distance z(x) and the attenuation coefficient of
the medium for each channel i.e. βc:

tc(x) = exp−βcz(x) (2)

In the ocean, the attenuation of red colors can be an order of magnitude larger than the
attenuation of blue and green [36]. Hence, contrary to the common assumption in single
image dehazing, the transmission t = (tR, tG, tB) is wavelength dependent.

The attenuation of light in underwater is not constant and varies with the change in
geography, seasons and climate. The attenuation coefficient (β) is dependent on wave-
length of various water types. Based on the water clarity, Jerlov [37] proposed a classi-
fication scheme for oceanic waters where open ocean waters are classified into class I,
IA, IB, II and III. He also defined the water type 1 through 9 for coastal waters. Type
I is the clearest and type III is the most turbid open ocean water. Similarly, for coastal
water, type 1 is the clearest and type 9 is the most turbid. We use three attenuation
coefficients: i.e. βR, βG, βB corresponding to RGB channels for our work.

3.2 Underwater Image Simulation Model

Obtaining a dataset of underwater images along with the ground truth information for
depth, composition of veiling light and transmission coefficients is a challenging and ex-
pensive task. Here we describe our contribution to simulate underwater images, which
is used to generate the ground truth of our underwater image dataset. This dataset aims
to approximate certain complex underwater phenomena such as forward photon scatter-
ing in an absorbing medium [38] and turbidity in water due to colored dissolved matter
[39], which inherently cause complementary image degradation (Fig. 1).

Our proposed model for underwater image simulation initiates from the classic at-
mospheric image formation model (see Equation 1) and introduces the effect of forward
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Fig. 1: Examples of degradations that can be simulated using our approach on NYU
Depth v2 dataset. Left: First row - underwater degradation (with increased water atten-
uation); Second row - diverse attenuation-lighting-scattering configurations. Right: first
row - scatter-enriched fog, second row - smoke-like degraded environments.

scattering by replacing the known radiance (clear image) with the sum of two contribu-
tions: one due to direct or straight-path scene radiance J ′

c(x) = (1 − kc(x))Jc(x) and
another due to scattered light from scene radiance Jsct

c (x), where kc(x) = exp−αcz(x)

modulates the depth-dependent likelihood that photons from the scene follow a straight-
line path. αc parameterizes scattering media (in an analogous fashion to a “particle
density”); we assume that all unscattered photons follow straight-line paths which are
perpendicular to the degraded image plane (as is implicitly assumed in Equation 1). For
forward scattering radiance, we follow an isotropic, non-polarized, Lambertian-inspired
diffusion & reflectance [40] light transmission model. In addition, we see scattering in-
teractions as occurring at the same depth as the radiance source. In order to model how
scattered photons travel from a single radiance source, we use a diffusive (bi-variate
isotropic Gaussian) approximation to compute the likelihood that a scattered photon
departing from the radiance source (clear image pixel coordinates) x′ = (x′

1, x
′
2) with

depth z(x′) arrives at pixel coordinates x = (x1, x2) of the degraded image plane:

Gc(x, x′) =
1

2π(γcz(x′))
exp

(
− (x′

1 − x1)
2 + (x′

2 − x2)
2

2(γcz(x′))2

)
, (3)

where γc modulates the scattering relationship with distance for channel c (acting as a
proxy for scattering trajectory variance). Eq. 3 can be interpreted as the two dimensional
distribution of the forward-scattered arriving intensity over the degraded image plane
from a single radiance source; the larger the ”on-plane” distance separating source pixel
x′ from the recovery pixel x is, the lower this likelihood becomes (see [41] for a more
elaborate version approximating the Lorentz-Mie scattering phase function distribution
on individual particles). Furthermore, we view each clear image pixel x′ ∈ S as an
individual radiance source, being each one subject to scattering dynamics independently
(this holds if wave-like and quantum interactions are excluded). Therefore, for a given
degraded image pixel x and channel c, integrating the radiance contributions onto x (e.i.
the likelihood of a photon being scattered, multiplied by the likelihood of a scattered
photon arriving at x, multiplied by the source radiance) from each source on S, provides
an expectation of the recovered scattered signal:

Jsct
c (x) =

∫
x′∈S

kc(x′)Jc(x′)Gc(x, x′)dx′. (4)
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This way, the signal collected at degraded image pixel x after considering signal atten-
uation, scattering effects and ambiance lighting is approximated by

Isctc (x) = (Jsct
c (x) + (1− kc(x))Jc(x))tc(x) + (1− tc(x))Ac. (5)

Finally, we increase the turbid visual appearance of the degraded image by weighting
Isctc with a Gaussian-smoothed salt & pepper-based noise image SPc, simulating the
random presence of larger particles such as colored dissolved matter:

Ic(x) = uIsctc (x) + (1− u)SPc{spcol,prc,σc}, (6)

where u ∈ [0, 1] is an image weighting parameter, spcol is a base particle color, prc is
the probability of adding a particle on SP ’s channel c, and σc is the deviation of the
Gaussian blur applied to SP ’s channel c.

4 Proposed Method

4.1 Network Architecture

The complete network architecture is depicted in Fig. 2. We have used three paral-
lel encoder-decoder models, corresponding to three branches of the global models:
i) simple degraded image formation model, using estimated depth image (see Equa-
tion (1)) ii) model for residual learning and iii) direct prediction of degraded image.
For all these three networks, the input R,G,B image is encoded into feature vectors by
using a DenseNet-169 [42] network which is pretrained on ImageNet [43]. Then this
vector is then fed into a successive series of upsampling layers in order to construct the
final depth map at half of the input resolution of the input image. These upsampling
layers and their associated skip-connections form our decoder. The proposed decoder
model is simple and straightforward [44]. Further architectural details are provided in
the supplementary materials. The complete network architecture is depicted in Fig. 2.
We have used three independent encoder-decoder models in this network. The original
clean image is taken as the input in all of these three encoder-decoder models. The first
encoder-decoder is used to predict the gray level depth image (IDepth). The second
encoder-decoder network is used to predict the RGB residual image (IResidue) and
the third encoder-decoder network is used to directly predict the simulated underwa-
ter image (ISimulated

Predicted ) from the original image. By using the estimated depth image
(IDepth), user given atmospheric light (Ac) and attenuation coefficients (βc, which is
further used to calculate tc; see Equation (2)), we compute the initial model-based de-
graded image (IDegraded

Initial ) using Equations (1) and 2. Now, by using IDegraded
Initial and

IResidue, we compute the estimated simulated image (ÎPredicted
Simulated). We apply the third

encoder-decoder network also to directly estimate the simulated image (IDirect
Predicted)

from the input of RGB image (IOriginal) only. To sum up, this architecture is based
on 3 individual blocks of encoder-decoder networks. The objective of the first network
is to estimate the depth image which is further used to obtain an initial degraded image
by applying the physics induced image formation model (see Equation (1)). The second
branch learns the residual by capturing everything that is not modeled by Equation (1)
in a data driven manner. The third branch directly predicts the ground truth image.
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Fig. 2: The proposed network architecture

4.2 Learning Loss Function

Any standard loss function for predicted image regression problems considers a dis-
crepancy measure between the ground truth image and the predicted image. However,
different considerations regarding the loss function can have very significant effects on
the training speed and the overall performance of image estimation. Here, we have cat-
egorically analyzed the influence or significance of each of the three branches of our
architecture on the overall performance of the network.

4.2.1 Technique 1: As a first approach, we use the initial two encoder-decoder blocks
(omitting the third or bottom most encoder-decoder block) of the network (see Fig. 2).
Our objective here is firstly to define a loss function that balances between the predicted
“depth image” (Idepth) by minimizing the difference of depth values while also penal-
izing distortions of high frequency details in the depth image domain (these details
typically correspond to object boundaries in the scene). Secondly, we also minimize
the difference between predicted simulated image (ISimulated

Predicted ) and the manually cal-
culated ground truth version of the same image. Thirdly, based on the predicted depth
image (Idepth), user given attenuation coefficients (βc), which is further used to calcu-
late the “transmission matrix” (tc) and atmospheric light (A), we first generate the “ini-
tial degraded image” (IDegraded

Initial ), which is then combined with the estimated “resid-
ual” image i.e. IResidue to generate the “estimated simulated image” ÎPredicted

Simulated (see
Equation (11)). Hence, we need to take into account the correct estimation of Idepth,
followed by the correct estimation of IDegraded

Initial which is the main contribution in the
formation of ÎPredicted

Simulated. It is also equally important to properly estimate IResidue as
it will represent the missing quantity between the targeted estimated image ÎPredicted

Simulated

and IDegraded
Initial . That is why we add IDegraded

Initial and IResidue to obtain the ÎPredicted
Simulated.
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To train using this configuration, we first define two separate loss functions i.e. Ld,
Lp and compute the final loss Ltotal = Ld+Lp. Ld represents the loss corresponding to
the depth image (Idepth) reconstruction, and Lp represents the loss corresponds to the
“estimated simulated image” (ÎPredicted

Simulated) reconstruction. Ld can be defined as follows:

Ld(yp, ŷp) = λy
1Ldepth(yp, ŷp) + λy

2LSSIM (yp, ŷp) (7)

The depth term Ldepth is the point-wise L1 loss which is defined on the depth values :

Ldepth(yp, ŷp) =
1

n

n∑
p

|yp − ŷp| (8) LSSIM (yp, ŷp) =
1− SSIM(y, ŷ)

2
(9)

The second term LSSIM uses the Structural Similarity (SSIM) [45], a common
metric for image reconstruction tasks and it has been shown to be a good loss term
for depth estimation by using CNNs [46]. As SSIM ≤ 1, we define a loss LSSIM as
in Equation (9). Please note that, in Equation (7), we only have defined λy

1 and λy
2

as two weighting parameters which we have empirically set to λy
1 = λy

2 = 0.1. The
inherited problem with such loss terms is that they tend to be larger when the ground-
truth depth values are bigger. In order to resolve this issue, the reciprocal depth values
are considered [47], where the original depth map yorig is replaced by the target depth
map y = m/yorig; where m is the maximum depth in the scene (e.g. m = 10 meters
for the NYU Depth v2 dataset). Our approach considers transforming the depth values
and computing the loss in the log space [48], [49]. The second loss Lp is defined as:

Lp(qp, q̂p) = λq
1

[
1

n

n∑
p

|qp − q̂p|

]
+ λq

2

[
1− SSIM(mp, q̂p)

2

]
(10)

where qp and q̂p represents true and predicted “estimated simulated image” (ÎPredicted
Simulated).

IDegraded
Initial (x) = tc(x)Ioriginal(x) + (1− tc(x)).Ac

tc(x) = exp−βcIDepth(x); ÎSimulated
Predicted (x) = IDegraded

Initial (x) + IResidue

(11)

Finally, the total loss is calculated as follows : Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p). Fur-
thermore, for this technique and the next ones, we also propose following two more
variants to compute the loss function.

4.2.1.1 Variant 1 : Instead of fixing the values of λq
1 and λq

2 as 0.1, we compute them
automatically by using the same network, shown in Fig. 2. After obtaining the pre-
trained features from the last encoder block of DenseNet, those are passed through two
blocks of Fully Connected (FC) Layers. These features are then flattened and reduced
in dimension by passing through several linear layers with ReLU activations. Finally
these features are passed through sigmoid layer to obtain two weights (see Block-1
and Block-2 in Fig. 2. Further architectural details are mentioned in supplementary
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material)3. By using these automatic weight values, the Ld and Lp is calculated as:

Ld(yp, ŷp) = w1
DepthLdepth(yp, ŷp) + (1− w1

Depth)LSSIM (yp, ŷp)

Lp(qp, q̂p) = w1
Residue

[
1
n

∑n
p |qp − q̂p|

]
+ (1− w1

Residue)
[
1−SSIM(qp,q̂p)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p)

(12)

4.2.1.2 Variant 2 : In addition with the weighted computation of Ld(yp, ŷp) and
Lp(qp, q̂p) (according to Equation (12)), we also compute the total loss in the following
manner.

Ltotal = w2
DepthLd(yp, ŷp) + (1− w2

Depth)Lp(qp, q̂p) (13)

4.2.2 Technique 2: As a second approach, a loss term corresponding to the “initial
degraded” image (computed by using Equation (1)) is added, compared to the total loss
of Equation (12). Along with the loss of depth image (IDepth) and “estimated simulated
image” (ÎPredicted

Simulated), we compute the loss (denoted as Lt) on IDegraded
Inital as:

Lt(hp, ĥp) = λh
1

[
1

n

n∑
p

|hp − ĥp|

]
+ λh

2

[
1− SSIM(hp, ĥp)

2

]
(14)

where hp and ĥp represents the true and predicted “initial degraded” image (IDegraded
Initial ),

and λh
1 , λh

2 are set to 0.1. Finally, the total loss is computed by:

Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp) (15)

As the variant 1 under this category, here also we compute the weighted (automatic)
version of Lt(hp, ĥp) in addition to the weighted version of Ld(yp, ŷp) and Lp(qp, q̂p)
(as in Equation (12),) as:

Lt(hp, ĥp) = w2
Depth

[
1
n

∑n
p |hp − ĥp|

]
+ (1− w2

Depth)
[
1−SSIM(hp,ĥp)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp)

(16)

As the variant 2 under this category, the total loss is computed as (see supplementary
material for more details about the architecture).

(17)Ltotal = w1
Extra × Ld(yp, ŷp) + w2

Extra × Lp(qp, q̂p)

+ [1− (w1
Extra + w2

Extra)]× Lt(hp, ĥp)

4.2.3 Technique 3: As the third modification, here we introduce an additional encoder-
decoder block to directly estimate the simulated image (IDirect

Predicted) from the clean RGB
image. Hence, we compute a dedicated loss (Lg) for (IDirect

Predicted) image only:

Lg(sp, ŝp) = λs
1

[
1

n

n∑
p

|sp − ŝp|

]
+ λs

2

[
1− SSIM(sp, ŝp)

2

]
(18)

3 For this architectural configuration, we do not create the second branch from Block 1, corre-
sponding to W 1

Extra, W 2
Extra, W 3

Extra as we don’t need these weights
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where sp and ŝp represents the true and predicted “directly simulated” image (IDegraded
Initial )

by the network and the value of λs
1 and λs

2 are set to 0.1. Finally, the total loss is:

Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp) + Lg(sp, ŝp) (19)

As the variant 1 under this category, here also we compute the weighted (automatic)
version of Lg(sp, ŝp) in addition to the weighted version of Ld(yp, ŷp), Lp(qp, q̂p) and
Lt(hp, ĥp) (in the same manner as in Equation (16)) in the following manner.

Lg(sp, ŝp) = w1
Direct

[
1
n

∑n
p |sp − ŝp|

]
+ (1− w1

Direct)
[
1−SSIM(sp,ŝp)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp) + Lg(sp, ŝp)

(20)

As the variant 2 under this category, the total loss is computed in the following manner
(see supplementary material for more details about the architecture).

(21)
Ltotal = w1

Extra × Ld(yp, ŷp) + w2
Extra × Lp(qp, q̂p) + w3

Extra

× Lt(hp, ĥp) + [1− (w1
Extra + w2

Extra + w3
Extra)]× Lt(hp, ĥp)

5 Experimental Results

5.1 Datasets

We have used following two well known datasets which provide RGB-D images.

5.1.1 NYU Depth v2: This dataset provides images and depth maps for different
indoor scenes, captured at the resolution of 640 × 480 [50]. For this work, we have
used a subset of 50k images which we obtained from [51]. The depth map has an upper
bound of 10 meters. Like in [51], our method also produces the predictions at the half
of the input resolution i.e. at 320 × 240 and here also we do not crop any of the input
image-depth map pairs even though they contain missing pixels, due to the preprocess-
ing for distortion correction. We have used 96% i.e. 48650 images for training and the
remaining 2030 images are used for testing purposes.

5.1.2 Make3D: This dataset contains 534 RGB-depth pairs, split into 400 pairs for
training and 134 for testing. The RGB images are provided at high resolution while
the available depth maps are comparatively at very low resolution. Therefore, the data
is resized into 460 × 345 as proposed in [52] [53]. We used the same data reading and
processing protocol as in [54] and the results are evaluated by using depth cap of 0−80.

5.2 Evaluation

We use standard metrics [48] to quantitatively compare our method against state-of-the-
art techniques. These error metrics are defined as:

i. Average relative error (rel): 1
n

∑n
p

|yp−ŷp|
y
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ii. Root mean square error (rms):
√

1
n

∑n
p (yp − ŷp)2

iii. Average (log10) error: 1
n

∑n
p |log10 (yp)− log10 (ŷp)|

iv. Threshold accuracy (δi): % of yp s.t. max(
yp

ŷp
,
ŷp

yp
) = δ < Thersh for Thresh =

1.25, 1.252, 1.253;

Where yp is a pixel in depth image y, ŷp is a pixel in the predicted depth image ŷ and n
is the total number of pixels for each depth image.

In Tables 1, we report the accuracy of the NYU-V2 dataset. The performance of
9 variants of the proposed methods are compared with 6 other relevant techniques.
The variant-1 for each technique performs slightly better than the core technique (i.e.
Technique-1 Variant-1 has performed better than Technique-1 itself). Whereas variant-
2 outperforms the variant-1 by a large margin. These results signifies that performing
the weighted combination of the contribution from different entities in the total loss
(see Equation (13)) strongly improves the results compared to considering equal and
full contribution of each term. Now, if we compare Technique-1, Technique-2 and their

Table 1: Comparisons of different methods on the NYU Depth v2 dataset
Method δ1δ1δ1 ↑ δ2δ2δ2 ↑ δ3δ3δ3 ↑ relrelrel ↓ rmsrmsrms ↓ log10log10log10 ↓

Proposed: Technique-1 0.505 0.747 0.890 0.614 0.176 0.150
Proposed: Technique-1 Variant-1 0.512 0.750 0.892 0.633 0.174 0.150
Proposed: Technique-1 Variant-2 0.769 0.947 0.986 0.165 0.109 0.065

Proposed: Technique-2 0.507 0.748 0.888 0.610 0.172 0.150
Proposed: Technique-2 Variant-1 0.509 0.736 0.885 0.622 0.173 0.150
Proposed: Technique-2 Variant-2 0.779 0.945 0.984 0.163 0.105 0.065

Proposed: Technique-3 0.510 0.743 0.883 0.601 0.173 0.150
Proposed: Technique-3 Variant-1 0.514 0.748 0.895 0.627 0.173 0.149
Proposed: Technique-3 Variant-2 0.792 0.952 0.987 0.152 0.100 0.060

Encoder-Decoder Model [51] 0.269 0.556 0.776 1.121 0.2345 0.231
Pix2Pix [25] 0.743 0.900 0.957 0.204 0.069 0.080

CycleGAN [30] 0.227 0.418 0.572 1.242 0.303 0.315
UNIT [28] 0.220 0.402 0.559 1.194 0.307 0.334

MUNIT [32] 0.233 0.364 0.482 1.394 0.341 0.349
DRIT [33] 0.246 0.451 0.606 1.223 0.311 0.298

variants, there is only minute difference in results within these approaches. Compared
to Technique-1, in Technique-2 the additional loss (i.e. Lt(hp, ĥp)) of “initial degraded”
(i.e. IDegraded

Initial ) image is added. As we have already used the depth image loss (Ld)
in Technique-1 and Technique-2, adding the Lt loss for IDegraded

Initial image, which is
computed by using the depth image (i.e. IDepth) and other user given constants i.e.
IOriginal, βc and Ac (see Equation (11)) does not make much difference in terms of
loss level contribution. Furthermore, in Technique-3 we add the additional loss Lg ,
corresponding to IDirect

Predicted image which also inherently adds computational burden,
related to the third block of encoder-decoder network (see Fig. 2). But adding this ex-
tra loss of Lg could only slightly improve the performance. Hence, we should find a



12 Tanmoy Mondal, Ricardo Mendoza, and Lucas Drumetz

Table 2: Comparisons of different methods on the Make-3D dataset
Method δ1δ1δ1 ↑ δ2δ2δ2 ↑ δ3δ3δ3 ↑ relrelrel ↓ rmsrmsrms ↓ log10log10log10 ↓

Proposed: Technique-1 0.359 0.603 0.757 1.613 0.284 0.226
Proposed: Technique-1 Variant-1 0.346 0.608 0.767 1.55 0.267 0.223
Proposed: Technique-1 Variant-2 0.355 0.617 0.772 1.527 0.262 0.220

Proposed: Technique-2 0.383 0.627 0.771 1.760 0.292 0.223
Proposed: Technique-2 Variant-1 0.366 0.615 0.769 1.59 0.270 0.221
Proposed: Technique-2 Variant-2 0.362 0.625 0.773 1.60 0.269 0.220

Proposed: Technique-3 0.379 0.621 0.771 1.648 0.281 0.220
Proposed: Technique-3 Variant-1 0.330 0.604 0.766 1.905 0.271 0.232
Proposed: Technique-3 Variant-2 0.365 0.626 0.778 1.589 0.263 0.218

Encoder-Decoder Model [51] 0.331 0.619 0.808 1.485 0.242 0.211
Pix2Pix [25] 0.239 0.458 0.638 1.367 0.301 0.264
CycleGAN 0.654 0.698 0.741 1.865 0.760 0.567

good trade-off between leveraging slight improvement in accuracy compared to the ad-
ditional computational burden. The values of δ1, δ2 and δ3 (which count the number of
pixels which are similar to each other between the ground truth and predicted image
with respect to three different threshold values) shows that the variant-2 of all the three
techniques have shown strong improvement in accuracy compared the core technique
and variant-1. However, the error metrics i.e. rel, rms and log10 (which calculates the
pixel level errors between the ground truth and predicted image) shows that variant-2
of all the three techniques have shown strong improvement in accuracies.

The proposed techniques are compared with several other relevant image-to-image
translation approaches. As the first such technique, we use only a single encoder-
decoder model (see third block in Fig.2) similar to the technique in [51] to directly
generate the degraded image from a RGB image. Except Pix2Pix [25], all other com-
parable techniques do not perform well enough. Although Pix2Pix [25] could perform
better than other state-of-the-art techniques, this image-to-image translation approach
is simply based on classical conditional-adversarial loss and L1 loss which does not in-
corporate any physical image degradation model/equation like our proposed technique.
The top 3 results for each metric is noted in bold whereas the best result is mentioned
in bold-italic style in Table.1 and Table.2.

A few examples of the proposed Technique 1 is shown in Fig. 3 where we can
observe that to a good extent the proposed technique is able to generate “initial degraded
image” (IDegraded

Initial ) (see Fig. 3d) with respect to the ground truth, as shown in Fig. 3b.
There are substantial differences between the “simulated underwater image” (Isctc ) and
IDegraded
Initial image (see Fig. 3c and Fig. 3b). The “haze image” explains some of the

physical degradation in an interpretable way, but needs to be complemented by the data-
driven residual. The proposed model can successfully capture this substantial difference
i.e. the residual image is shown in Fig. 3e. By using these IDegraded

Initial and IResidue,
we can successfully predict the “Simulated Underwater Image” (ÎSimulated

Predicted ), shown in
Fig. 3f. Still, we are not always able to correctly reconstruct the colors perfectly but we
can simulate the strong underwater blurry degradation effects.
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(a)

(b)

(c)

(d)

(e)

(f)
Fig. 3: Qualitative Measures obtained by Proposed Technique 1 : (a) Original RGB
images (i.e. Jc(x) in Equation (1)) (b) Ground Truth of “Initial Degraded Image” (i.e.
Ic(x) in Equation (1)) (c) Ground Truth of “Simulated Underwater Image” (i.e. Isctc (x)
in Equation (5)) (d) Predicted “Initial Degraded Image” (i.e. IDegraded

Initial in Fig. 2) (e)
Predicted “Residual Image” (i.e. IResidue in Fig. 2) (f) Predicted “Simulated Underwa-
ter Image” (i.e. ÎSimulated

Predicted in Fig. 2).

It is difficult to draw any substantial conclusion from the results of Make-3D dataset
(as is very small and the depth image resolution is quite low, compared to RGB image,
making it necessary to interpolate the depth image which highly degrades its quality),
shown in Table 2. The same phenomenon is also visible that variant-2 has performed
either better or very similar to it’s counterparts i.e. the core technique and variant-1
for all of the three proposed techniques. By observing the weaker performance of other
state-of-the-art methods from Table. 1, here we only have tested the simple encoder-
decoder model and most relevant as well as well known Pix2Pix, CycleGAN networks.
The performance of these techniques are either close (e.g. encoder-decoder network) or
fall behind (e.g. Pix2Pix model) the proposed techniques. Moreover, for certain metric
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(i.e. δ1 and δ2), CycleGAN has outperformed others. Most importantly, as mentioned
before that none of these technique incorporate any physical image degradation mod-
el/equation and are as interpretable as the proposed methods.

6 Discussion

An interesting byproduct of our approach is that our trained model enables us to solve
the inverse problem of underwater image restoration. Indeed, suppose we want to obtain
a clean image Jc from a degraded underwater image y. A natural way of carrying out
this task is to minimize a mean squared error between the output of a known forward
physical model f and the real underwater image:

arg min
Jc,θ

||f(Jc, θ)− y||2

w.r.t. the input parameters of the model θ, in our case veiling light, attenuation coeffi-
cients, depth image, and also the clean image Jc itself; depth image could be estimated
from degraded underwater image y using a learned model. The resulting optimization
problem requires computing the derivatives of f : ∂f

∂θ and ∂f
∂Jc

. Analytic derivatives are
typically cumbersome to obtain for intricate physical models; hence leveraging auto-
matic differentiation tools (e.g. Pytorch, Tensorflow etc.) is necessary. However, this
requires f to be perfectly known, and implemented in a modern automatic differentia-
tion package, [55]. Here, the complex image formation model needs to be both known
and differentiable. In real scenarios, a generative physical model is often unknown or
badly known. Even when it is known, it is often implemented in languages that do
not support automatic differentiation (e.g. C++, Fortran). With our approach, we ob-
tain a deep learning-based emulator [55], in Pytorch: obtaining the derivatives of this
model w.r.t to any of its inputs is straightforward thanks to it’s automatic differentiation
property. Moreover, the emulator does not require the knowledge of the underlying gov-
erning equations, its only task is to reproduce the desired outputs, even in a black-box
fashion. Therefore, implementing algorithms to solve inverse problems which require
to optimize over the model’s input or parameters is easy with our trained model, and
will be a basis for our future work.

7 Conclusion

In this paper, we have proposed a physics-informed and data-driven deep learning archi-
tecture to simulate the effect of underwater image degradation. We proposed a complex
image formation model to create a simulated dataset from any RGB-depth available
dataset. We proposed to inform our network with a simple haze image formation model
that is able to account for simple image degradations, provided a good estimate of the
depth image can be obtained. This image, as well as a residual image that captures
the missing physics directly from data are obtained via DenseNet encoding-decoding
blocks. Different losses are designed in order to estimate each component as well as
their weighting parameters; which are obtained automatically. We obtain an emulator
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of this physical phenomenon that paves the way to obtaining differentiable and effi-
cient emulators of complex physical models in other scenarios. We have shown on two
datasets that our approach outperforms classical physics-ignorant deep learning models
suited for image to image translation tasks. Future work will revolve around exploiting
the interpretability and differentiability of the model to solve the inverse problem of
image restoration.
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1 More Details on Image Formation Model

1.1 Classical Simulation Model

The classical image formation model (developed in [35]) is written in Equation (1). The
image intensity (x) at each pixel is composed of two components: the attenuated signal
and the veiling light.

Ic(x) = tc(x)Jc(x) + (1− tc(x)).Ac (1)

where bold letters denotes vectors, x is the pixel coordinate, Ic is the acquired image
value in the color channel c, tc is the transmission of the color channel, and Jc is the
object radiance or clean image. The global veiling-light/atmospheric light component
Ac is the scene value in the areas with no objects (tc = 0,∀c ∈ {R,G,B}). The
transmission depends on the object’s distance z(x) and the attenuation coefficient of
the medium for each channel i.e. βc:

tc(x) = exp−βcz(x) (2)

In the ocean, the attenuation of red colors can be an order of magnitude larger than the
attenuation of blue and green [36]. Hence, contrary to the common assumption in single
image dehazing, the transmission t = (tR, tG, tB) is wavelength dependent.

1.2 Water Attenuation

The attenuation of light in underwater is not constant and varies with the change in
geography, seasons and climate. The attenuation coefficient (β) is dependent on wave-
length of various water types. For clear open waters, the longest wavelength of visible
light is first absorbed, resulting in deep blue colors to the eye. Waters near to the shore
contain more suspended particles than the central ocean waters which scatter light and
make coastal waters less clear than open waters. Moreover, the absorption of shortest
wavelengths is stronger, thus the green wavelength reaches deeper than the other wave-
lengths. Based on the water clarity, Jerlov [37] proposed a classification scheme for
oceanic waters where open ocean waters are classified into class I, IA, IB, II and III.
He also defined the water type 1 through 9 for coastal waters. Type I is the clearest
and type III is the most turbid open ocean water. Similarly, for coastal water, type 1
is the clearest and type 9 is the most turbid. We use three attenuation coefficients: i.e.
βR, βG, βB corresponding to RGB channels for our work.
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(a) (b)
Fig. 1: (a) The attenuation coefficients (β) of Jerlov water types. The solid lines corresponds
to open ocean water types while the dashed lines mark coastal water types. (b) For the case
of different water types, the simulation of the appearance of white surface, viewed at depth of
1− 20m. (figures are taken from [56])

The Fig. 1a shows the attenuation coefficient (β) dependency on wavelength of
various water types. Whereas, Fig. 1b shows an RGB simulation of the appearance of
a perfect white surface viewed at different depths in different water types. A common
notion is followed that red colors gets attenuated faster than blue/green colors only in
the case of ocean water types. Based on three color channel i.e. R,G,B, we are interested
in three corresponding attenuation coefficients: i.e. βR, βG, βB in order to correct/de-
noise the image. In our work, we use only Jerlov water types to constrain the space of
attenuation coefficients in the RGB domain.

2 Network Architecture

Our encoder-decoder network is based on DenseNet-169 [42] where top most layer
related to original ImageNet classification task is removed. Here, we use a pretrained
DenseNet-169 model, which was trained on ImageNet dataset [57]. The encoder struc-
ture is shown in Table. 1 where the initial image of size b × 3 × 480 × 640 (where b
is the batch size), is sequentially passed through several layers, which are mentioned
in each row of the Table. 1. The size of the image gets gradually decreased by passing
through each layer of the network and output size from each layers are mentioned in
2nd column of the Table. 1. For more details about the DenseNet-169 network, please
see [42]. Please note that we have used pretrained model to easily obtain the image
features from every DenseNet-169 network layers.

For the decoder part, we pass the output of Batch Norm -5 layer (see row 13 of
Table. 1) through ReLU activation, succeeded by the following convolutional layer (see
Table. 2), where β = F and ζ = F to generate a tensor of size [t1 : b × F ×m × n];
where m = 15, n = 20 and F = 1664 respectively. Now, to concatenate the output
tensor (Trans-2) from Transition Layer-2 (see item 9 in Table.1) i.e. the tensor of [b ×
256×30×40] dimension with t1, we perform an up-sampling to double the size of t1 by
using bi-linear interpolation which generates a tensor of size [b×F×(m×2)×(n×2)].
Now the tensor t1 and Trans-2 are concatenated along it’s 2nd dimension to generate
another tensor of [b × 1920 × (m × 2) × (n × 2)] dimension. Then this tensor is
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Table 1: DenseNet-169 based encoder model
Sl. No. Layers Output Size DenseNet-169

1 Input Image b× 3× 480× 640 ×
2 Convolution b× 64× 240× 320 No. of filters : 64; Conv: 7× 7;

Stride: 2× 2; Padding: 3× 3

3 Batch Norm b× 64× 240× 320 ϵ = 10−5; momentum = 0.1

4 ReLU Activation b× 64× 240× 320

5 Max Pooling b× 64× 120× 160 Kernel Size: 3× 3; Stride: 2× 2;
Padding: 1× 1; Dilation: 1× 1

6 Dense Block - 1 b× 256× 120× 160

[
Conv: 1× 1

Conv: 3× 3

]
× 6

7 Transition Layer - 1
b× 128× 120× 160 Conv: 1× 1
b× 128× 60× 80 Average Pool : 2× 2; Stride: 2× 2

8 Dense Block - 2 b× 512× 60× 80

[
Conv: 1× 1

Conv: 3× 3

]
× 12

9 Transition Layer - 2
b× 256× 30× 40 Conv: 1× 1
b× 256× 30× 40 Average Pool : 2× 2; Stride: 2× 2

10 Dense Block - 3 b× 1280× 30× 40

[
Conv: 1× 1

Conv: 3× 3

]
× 32

11 Transition Layer - 3
b× 640× 15× 20 Conv: 1× 1
b× 640× 15× 20 Average Pool : 2× 2; Stride: 2× 2

12 Dense Block - 4 b× 1664× 15× 20

[
Conv: 1× 1

Conv: 3× 3

]
× 6

13 Batch Norm - 5 b× 1664× 15× 20 ϵ = 10−5; momentum = 0.1
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Table 2: The convolution layer

Convolution
No. of input filters/channels : β; No. of output filters/channels : ζ; Conv

kernel : 1× 1; Stride: 1× 1; Padding: 0

passed through Convolution-A layer (see item 1 of Table. 3) to generate a tensor of size
[b×832×(m×2)×(n×2)]; where β and ζ is taken as 1920 and F

2 = 832 respectively.
Then this generated tensor is sequentially passed through Leaky ReLU-A, Convolution-
B and Leaky ReLU-B layers (see items 2, 3 and 4 in Table. 3) to generate the tensor of
size [t2 : b×832×(m×2)×(n×2)]; where β = ζ = 832 are taken for Convolution-B
layer (see item 3 in Table. 3).

Table 3: The up-sampling block
Sl. No. Layers Specifications

1 Convolution-A No. of input filters/channels : β; No. of output
filters/channels : ζ; Conv kernel : 3× 3; Stride: 1; Padding: 1

2 Leaky ReLU-A α = 0.2; where α controls the angle of the negative slope
3 Convolution-B No. of input filters/channels : β; No. of output

filters/channels : ζ; Conv kernel : 3× 3; Stride: 1; Padding: 1
4 Leaky ReLU-B α = 0.2

Now in the same manner, the tensor t2 is interpolated and concatenated with the
output tensor (Trans-1) from Transition Layer-1 (see item 7 in Table.1) i.e. the tensor of
[b×128×60×80] dimension. The concatenated tensor become of size [b×960×60×80].
This concatenated tensor is similarly passed through Convolution-A, Leaky ReLU-A,
Convolution-B and Leaky ReLU-B layers (see items 1, 2, 3 and 4 in Table. 3), where β =
F
2 +128 and ζ = F

4 for Convolution-A layer and β = F
4 and ζ = F

4 for Convolution-B
layer. From these operations, we will generate a tensor of [t3 : b × 416 × 60 × 80]
dimension.

Then, the tensor t3 is again interpolated and concatenated with the output tensor
from Max Pooling Layer (see item 5 in Table.1) i.e. the tensor of [b× 64× 120× 160]
dimension. The concatenated tensor become of size [b×480×120×160]. This concate-
nated tensor is similarly passed through Convolution-A, Leaky ReLU-A, Convolution-B
and Leaky ReLU-B layers (see items 1, 2, 3 and 4 in Table. 3), where β = F

4 + 64 and
ζ = F

8 for Convolution-A layer and β = F
8 and ζ = F

8 for Convolution-B layer. From
these operations, we will generate a tensor of [t4 : b× 208× 120× 160] dimension.

After that, the tensor t4 is also interpolated and concatenated with the output tensor
from ReLU activation Layer (see item 4 in Table.1) i.e. the tensor of [b×64×240×320]
dimension. The concatenated tensor become of size [b × 272 × 240 × 320]. This con-
catenated tensor is similarly pass through Convolution-A, Leaky ReLU-A, Convolution-
B and Leaky ReLU-B layers (see items 1, 2, 3 and 4 in Table. 3), where β = F

8 +64 and
ζ = F

16 for Convolution-A layer and β = F
16 and ζ = F

16 for Convolution-B layer. From
these operations, we will generate a tensor of [t5 : b × 104 × 240 × 320] dimension.
Finally, this t5 tensor is passed through the following convolution layer where β = F

16
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and ζ = 3 to generate a tensor of [t6 : b × 3 × 240 × 320] dimension. The input im-

Convolution
No. of input filters/channels : β; No. of output filters/channels : ζ; Conv

kernel : 3× 3; Stride: 1× 1; Padding: 1

ages are represented by their original colors in the range [0, 1] without any input data
normalization. Target depth maps are clipped to the range [0.4, 10] in meters.

3 Further Details : Learning Loss Function

Technique-1 is explained in details in the main paper. In this section of supplemen-
tary materials, we will further describe Technique-2 and its variants i.e. Variant-1 and
Variant-2 of Technique-2 in details.

3.1 Technique 1

As the first approach, the total loss (Ltotal) is computed by adding the loss over depth
image i.e. Ld and the loss over estimated simulated image i.e. Lp. Hence, Ltotal =
Ld+Lp. Where, Ld is computed by combining the weights λy

1 and λy
2 (see Equation (7))

and Lp is computed by combining the weights λq
1 and λq

2 (see Equation 10). These
weights are initially set as 0.1.

3.1.1 Variant 1 : Instead of fixing the values of λq
1 and λq

2 as 0.1, we compute them
automatically by using the same network, shown in Fig. 2. The pre-trained features (of
size [b × 1664 × 15 × 20] from the last layer of the DenseNet based encoder i.e. from
Batch Norm - 5 layer (see item 13 in Table. 5) is branched out and passed through
two consecutive ConvBNRelu blocks, shown in following Table. 4; where β = 1664,
ζ = 512, k = 11, s = 1 and p = 1 is taken for first ConvBNRelu block and β = 512,
ζ = 256, k = 9, s = 1 and p = 1 for the second ConvBNRelu block. Then the output
feature is passed through the “Average Pooling” layer1, having a kernel of size 1. This
makes the feature to get transformed into 2D features which are then flattened and re-
duced into the 1D feature. Then these 1D features are passed through following layers:

DropOut-FC(256 → 128)-RELU

DropOut-FC(128 → 64)-RELU

DropOut-FC(64 → 32)-RELU

DropOut-FC(32 → 16)-RELU

FC(16 → 2)

1 here we have used “Adaptive Average Pooling” algorithm from PyTorch library. For more
details, see : https://pytorch.org/cppdocs/api/classtorch_1_1nn_1_1_
adaptive_avg_pool1d.html
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After passing through the above layers, we will obtain two output values which
are then passed through Sigmoid activation function to finally get two weight values.
We apply this above mentioned technique to obtain two weight values i.e. w1

Depth and
w2

Depth from the encoder of Block-1 and another two weight values i.e. w1
Residue and

w2
Residue from the encoder of Block-2 (see Fig. 2 for reference).

Table 4: The ConvBNRelu block
Sl. No. Layers Specifications

1 Convolution No. of input filters/channels : β; No. of output
filters/channels : ζ; Conv kernel : k×k; Stride: s; Padding: p

2 Batch Norm No. of output filters/channels : ζ
2 ReLU

Please note that here we have applied the Sigmoid activation function because the
posterior probability values are between 0−1 but the sum of these values can be greater
than 1 (whereas, in the case of SoftMax activation function, the posterior probability
values are between 0 − 1 and the sum of all these values are 1)2. Hence, by apply-
ing Sigmoid activation function, we confirm that the individual weights i.e. w1

Depth,
w2

Depth, w1
Residue and w2

Residue are within 0− 1. Moreover, by applying (1−w1
Depth)

or (1−w1
Residue) on the second term for loss computation (see Equation 3), we confirm

that only the remaining weight is applied on the second term. By using these automatic
weight values, the Ld and Lp is calculated as:

Ld(yp, ŷp) = w1
DepthLdepth(yp, ŷp) + (1− w1

Depth)LSSIM (yp, ŷp)

Lp(qp, q̂p) = w1
Residue

[
1
n

∑n
p |qp − q̂p|

]
+ (1− w1

Residue)
[
1−SSIM(qp,q̂p)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p)

(3)

3.1.2 Variant 2 : In addition with the weighted computation of Ld(yp, ŷp) and Lp(qp, q̂p)
(according to Equation (12)), we also compute the total loss in the following manner,
where the weight values w2

Depth and (1 − w2
Depth) are applied to perform weighted

combination to the computation of total loss (i.e. Ltotal).

Ltotal = w2
DepthLd(yp, ŷp) + (1− w2

Depth)Lp(qp, q̂p) (4)

3.2 Technique 2

As a second approach, a loss term corresponding to the “initial degraded” image (com-
puted by using Equation (1) in the main paper) is added, compared to the total loss of
Equation (12).

2 For details, see : https://medium.com/arteos-ai/the-differences-between-sigmoid-and-softmax-
activation-function-12adee8cf322
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3.2.1 Variant 1 : In the same way as it is mentioned in Equation (12), here also
we compute the weighted (automatic) version of Ld(y, ŷ) and Lp(q, q̂). Whereas the
weighted (automatic) version of Lt(h, ĥ) and the total loss is computed in the following
manner. The needed weight w2

depth is computed in the above defined manner.

Lt(hp, ĥp) = w2
Depth

[
1
n

∑n
p |hp − ĥp|

]
+ (1− w2

Depth)
[
1−SSIM(hp,ĥp)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp)

(5)

3.2.2 Variant 2 : In the same manner, to compute the total loss, we need at-least 2
weight values. To obtain these weights, we use the same strategy as the one mentioned
in Section 3.1.1. We take out another branch from the last layer of the DenseNet based
encoder i.e. from Batch Norm - 5 layer (see item 13 in Table. 5) and apply exactly
same operation as before like passing through two consecutive ConvBNRelu blocks,
shown in following Table. 4, applying “Adaptive Average Pooling” layer, followed by
flattening operation which is followed by several blocks of DropOut-FC-RELU. But
here, from the very last linear layer (i.e. FC(16 → 3 )), we obtain 3 output values which
are then passed through Soft-Max activation function to finally get 3 weight values.
Please note that here we have applied the Soft-Max activation function because the
posterior probability values are between 0 − 1 and the sum of all these values are 1.
Hence, by applying Sigmoid activation function, we confirm that the individual weights
i.e. w1

Extra, w2
Extra are within 0−1. Moreover, by applying [1−(w1

Extra+w2
Extra)] on

the third term for loss computation (see Equation 6), we confirm that only the remaining
weight is applied on the third term.

(6)Ltotal = w1
Extra × Ld(yp, ŷp) + w2

Extra × Lp(qp, q̂p)

+ [1− (w1
Extra + w2

Extra)]× Lt(hp, ĥp)

3.3 Technique 3

As the third modification, here we introduce an additional encoder-decoder block to
directly estimate the simulated image (IDirect

Predicted) from the clean RGB image. Hence,
we compute a dedicated loss (Lg) for (IDirect

Predicted) image only:

Lg(sp, ŝp) = λs
1

[
1

n

n∑
p

|sp − ŝp|

]
+ λs

2

[
1− SSIM(sp, ŝp)

2

]
(7)

where sp and ŝp represents the true and predicted “directly simulated” image (IDegraded
Initial )

by the network and the value of λs
1 and λs

2 are set to 0.1. Finally, the total loss is:

Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp) + Lg(sp, ŝp) (8)

3.3.1 Variant 1 : As the variant 1 under this category, in the same way as it is
mentioned in Equation 16, here also we compute the weighted (automatic) version of
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Lg(sp, ŝp) in addition to the weighted version of Ld(yp, ŷp), Lp(qp, q̂p) and Lt(hp, ĥp)
(see Equation (9)) in the following manner. Here also the weight value of w1

Direct is
applied in the same manner to compute the weighted combination of total loss (Ltotal).

Lg(sp, ŝp) = w1
Direct

[
1
n

∑n
p |sp − ŝp|

]
+ (1− w1

Direct)
[
1−SSIM(sp,ŝp)

2

]
Ltotal = Ld(yp, ŷp) + Lp(qp, q̂p) + Lt(hp, ĥp) + Lg(sp, ŝp)

(9)

3.3.1.1 Variant 2 : As the variant 2 under this category, in the same manner, here
also we can compute the total loss in the following way. In this case, we need at-least 3
weight values which are obtained in the same manner as it is mentioned in Section 3.2.2.

(10)
Ltotal = w1

Extra × Ld(yp, ŷp) + w2
Extra × Lp(qp, q̂p) + w3

Extra

× Lt(hp, ĥp) + [1− (w1
Extra + w2

Extra + w3
Extra)]× Lt(hp, ĥp)

One important thing to note here is that all the computed weight values (W) e.g.
W : w1

depth, w2
depth, w1

Residue, w2
Residue etc. computes weights based on a given RGB

image. Hence, if there are b number of images in a batch then we will generate b number
of such weights. But all these Equations for computing loss e.g. Equation (3), (4), (5),
(6) etc. are directly computed on batches. Hence, to apply the weight values, we take
it’s mean over a batch i.e. w =

∑b
n=1 Wn

b . This is also a reason to apply 1− w amount
of weights in the second term of the loss calculation equations e.g. Equation (3), (4) etc.

Table 5: The number of trainable parameters of each block for all the proposed tech-
niques. The time needed to execute each epoch for each of the techniques. The extra pa-
rameters in Variant-1 and Variant-2 of each block appears due to supplementary branch,
needed for the automatic weight computation.

Proposed Method Block-1 Block-2 Block-3 Training Time
Technique-1 443, 22, 689 443, 24, 563 × 2 hr 39 min 25 sec

Technique-1 Variant-1 1580, 73, 747 1580, 75, 621 × 3 hr 21 min 35 sec
Technique-1 Variant-2 1580, 73, 747 1580, 75, 621 × 3 hr 28 min 19 sec

Technique-2 443, 22, 689 443, 22, 689 × 2 hr 26 min 56 sec
Technique-2 Variant-1 1580, 73, 747 1580, 75, 621 × 2 hr 49 min 17 sec
Technique-2 Variant-2 1580, 73, 747 1580, 75, 621 × 2 hr 49 min 18 sec

Technique-3 443, 22, 689 443, 24, 563 443, 24, 563 5 hr 41 min 59 sec
Technique-3 Variant-1 1580, 73, 747 1580, 75, 621 1580, 75, 621 5 hr 59 min 24 sec
Technique-3 Variant-2 1581, 17, 558 1580, 75, 621 1580, 75, 621 5 hr 59 min 27 sec

4 Training Details

For each of the different proposed network configurations, the total number of trainable
parameters are mentioned in Table. 5. We have also mentioned the time needed to exe-
cute one epoch for each of the proposed techniques. It can be seen that Technique-3 and
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two of its variants have a lot more training parameters and it also takes more time to
train. The training parameters are mentioned in Table. 6. We have used Adam Optimizer
from PyTorch3 library for the training. Except learning rate, we have taken the default
values of other parameters.

Table 6: The parameters for training

Proposed Method Optimizer Learning Rate
Technique-1 Adam 1e−6

Technique-1 Variant-1 Adam 1e−6

Technique-1 Variant-2 Adam 1e−6

Technique-2 Adam 1e−6

Technique-2 Variant-1 Adam 1e−6

Technique-2 Variant-2 Adam 1e−6

Technique-3 Adam 1e−5

Technique-3 Variant-1 Adam 1e−5

Technique-3 Variant-2 Adam 1e−6

4.1 Training Loss

The training loss plots of the Technique-2, Technique-2 Variant-1, Technique-2 Variant-
2 and consecutively the training loss of Technique-3, Technique-3 Variant-1, Technique-
3 Variant-2 are shown in Fig. 2a and Fig. 2b respectively. It can be visible from these
plots that the training losses of all the techniques decreases gradually whereas the
Variant-1 and Variant-2 of both the Technique-2 and Technique-3 gets stabilized quickly
(i.e. less number of epochs are needed). Moreover, we can also see that either training
loss decreases rapidly (see the plots of Technique-2 Variant-1, Technique-2 Variant-2
and Technique-3 Variant-1) or it starts with low value and stabilizes quickly (see the
plot of Technique-3 Variant-1). Please note that Technique-1 along with it’s variants has
similar characteristics and performance as Technique-2 and it’s variants, here we have
shown the loss curve on Technique-2 and it’s variants only.

3 https://pytorch.org/docs/stable/generated/torch.optim.Adam.
html
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(a)

(b)
Fig. 2: (a) The training loss curve of Technique-2 and it’s variants (b) The training loss curve of
Technique-3 and it’s variants
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(a)

(b)

(c)

(d)

(e)

(f)
Fig. 3: Qualitative Measures obtained by Proposed Technique 1 : (a) Original RGB
images (i.e. Jc(x)) (b) Ground Truth of “Initial Degraded Image” (i.e. Ic(x)) (c) Ground
Truth of “Simulated Underwater Image” (d) Predicted “Initial Degraded Image” (i.e.
IDegraded
Initial ) (e) Predicted “Residual Image” (i.e. IResidue) (f) Predicted “Simulated Un-

derwater Image” (i.e. ÎSimulated
Predicted ).
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(a)

(b)

(c)

(d)

(e)

(f)
Fig. 4: Qualitative Measures obtained by Proposed Technique 1 Variant 1 : (a) Orig-
inal RGB images (i.e. Jc(x)) (b) Ground Truth of “Initial Degraded Image” (i.e. Ic(x))
(c) Ground Truth of “Simulated Underwater Image” (d) Predicted “Initial Degraded
Image” (i.e. IDegraded

Initial ) (e) Predicted “Residual Image” (i.e. IResidue) (f) Predicted
“Simulated Underwater Image” (i.e. ÎSimulated

Predicted ).


