
1

Efficient Algorithms for Knowledge Discovery
from Time Series

Tanmoy Mondal∗, Reza Akbarinia∗ and Florent Masseglia∗
∗ZENITH Team, INRIA & LIRMM, Univ. Montpellier, France
{tanmoy.mondal, reza.akbarinia, florent.masseglia}@inria.fr

Abstract—Matrix profile is an efficient technique for knowledge extraction from time series, e.g., motif and anomaly detection. Several
algorithms have been yet proposed for computing it, e.g., STAMP, STOMP and SCRIMP++. All these algorithms use the z-normalized
Euclidean distance to measure the distance between subsequences. However, as we illustrate in this paper, for some datasets the
non-normalized (classical) based matrix profile is more useful. Thus, efficient matrix profile techniques based on both z-normalized
and non-normalized distances are necessary for knowledge extraction from different time series datasets.
In this paper, we propose such efficient techniques. We first propose an efficient algorithm called AAMP for computing matrix profile
with the non-normalized Euclidean distance. Then, we extend our algorithm for the p-norm distance. We also propose two algorithms
called ACAMP and ACAMP-Optimized that use the same principle as AAMP, but for calculating matrix profile by using z-normalized
Euclidean distance. We implemented and evaluated the performance of our algorithms through experiments over real world datasets.
The results illustrate that AAMP is very efficient for computing matrix profile for non-normalized Euclidean distances. They also illustrate
that the ACAMP-Optimized algorithm is significantly faster than the state of the art matrix profile algorithms for the case of z-normalized
Euclidean distance.

Index Terms—Time series analysis; STAMP; STOMP; All-pairs-similarity search; Motifs and discord discovery; Outliers detection;
Anomaly detection; Joins

F

1 INTRODUCTION

M Atrix profile has been recently proposed as an efficient
technique to the problem of all-pairs-similarity search

in time series [1]–[8]. Given a time series T and a subsequence
length m, the matrix profile returns for each subsequence, the
distance to the most similar subsequence in the time series.
It is itself a very useful time series for data analysis, e.g.,
detecting the motifs (represented by low values), or anomalies
(represented by high values), etc.

Recently, efficient algorithms have been proposed for ma-
trix profile computation, e.g., STAMP [1], STOMP [2] and
SCRIMP++ [8]. All these algorithms use the z-normalized
Euclidean distance to measure the distance between subse-
quences. They are based on a technique, named as Mueen’s
Algorithm for Similarity Search (MASS) [9] for efficient calcu-
lation of z-normalized Euclidean distance, by exploiting the
Fast Fourier Transform (FFT). The z-normalized Euclidean
distance formula used in the MASS algorithm is derived
from Pearson correlation which works only for computing
z-normalized Euclidean distance, and makes it inappropriate
for computing classical Euclidean distance.

However, we observed that for some datasets, the non-
normalized (classical) Euclidean distance is more useful
for knowledge discovery. In fact, in some cases the z-
normalization can remove rare and important information. As

• M. Tanmoy Mondal is currently with “Signal and Communication” Team,
IMT Atlantique, Brest, France.

an example, consider Fig. 1a (top), which shows two time
series from the real ECG dataset. In Fig. 1a (middle) and
(bottom), we see the matrix profiles generated for the two time
series by considering z-normalized (using STOMP algorithm)
and non-normalized Euclidean (using our AAMP) distances
respectively. In this example, the matrix profiles generated
using the z-normalized distance loose the information about
the anomalies (marked by magenta color in Fig. 1a top.).
But, the matrix profile calculated by using non-normalized
Euclidean distance can clearly highlight those anomalies.

In addition, the z-normalized Euclidean distance does not
necessarily provide the nearest neighbors (matches) of the
subsequences from the same range of values. Hence, the match
of a subsequence can come from completely different range
of values and in some applications these matches could be
considered as irrelevant. An example is depicted in Fig. 1b,
where we show the matches for four query subsequences,
taken from the time series of a real sheep dataset, representing
different activities like RUNNING and WALKING (see detail
of the dataset in Section 5.1.1). It is clearly visible that
our proposed AAMP algorithm that uses the non-normalized
Euclidean distance is capable of returning matches that are in
the same range of values as the query subsequences. In Fig. 1b,
we only have shown few selective examples among several
others, where by using non-normalized Euclidean distance, we
found better matches.

In fact, the z-normalized Euclidean distance based matrix
profile is able to find the shape-wise matches from any range of
values and that’s why the shape-wise similarity could be found
irrespective of the numerical values. This is an advantage for

2

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

-2

0

2

Query Signal

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

-3

-2

-1

0

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

2

4

6 MP by STOMP

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

2

4

6

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

2

4

6

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

2

4

6

MP by AAMP

(a)

0
1
0
0

2
0
0

-1

-0.8

-0.6

-0.4

0
1
0
0

2
0
0

-1

0

1

0
1
0
0

2
0
0

-1

-0.8

-0.6

-0.4

0
1
0
0

2
0
0

-1

0

1

Query Subsequence

0
1
0
0

2
0
0

0

5

10

STOMP Match

0
1
0
0

2
0
0

-1

0

1

0
1
0
0

2
0
0

-1.5

-1

-0.5

0

0
1
0
0

2
0
0

0

1

2

3

0
1
0
0

2
0
0

-1

-0.8

-0.6

-0.4

AAMP Match

0
1
0
0

2
0
0

0.44

0.45

0.46

0
1
0
0

2
0
0

-1.5

-1

-0.5

0

0
1
0
0

2
0
0

0.44

0.45

0.46

(b)

Figure 1: a) Top: example of two different time series from ECG dataset; Middle: matrix profile generated by z-normalized
Euclidean distance using STOMP algorithm; Bottom: matrix profile generated by non-normalized Euclidean distance using
our AAMP algorithm. b) Top: four subsequences of length 50 from sheep dataset; Middle: the nearest neighbors obtained by
STOMP; Bottom: the nearest neighbors obtained by AAMP are in the same range as the queries, while the results obtained
by STOMP are in very different ranges.

some applications, but a disadvantage for others (i.e., those
that need the matches from the same range). This is why, a
combination of both z-normalized and non-normalized based
matrix profiles is necessary for knowledge extraction in a wide
range of applications.

In this paper, we provide efficient techniques for the cal-
culation of matrix profile for both z-normalized and non-
normalized distances. Our contributions are as following:

• We propose an efficient algorithm called AAMP for com-
puting matrix profile with the non-normalized Euclidean
distance. AAMP is executed in a set of iterations, such
that in each iteration the distance of subsequences is
incrementally computed. We also extend AAMP to com-
pute matrix profile for the p-norm distance that is more
general than the Euclidean distance which is actually a
2-norm distance.

• We propose an algorithm called ACAMP that uses the
same principle as AAMP but for the z-normalized Eu-
clidean distance. In ACAMP, we use an incremental
formula for computing the z-normalized distance that is
based on some variables, calculated incrementally in a
sliding window that moves over the subsequences of the
time series. We also propose an improved version of
the ACAMP algorithm, called ACAMP-optimized, that
is significantly faster than ACAMP.

• We implemented our algorithms and compared them with
the state of the art algorithms on matrix profile, i.e.,
STOMP, SCRIMP and SCRIMP++, using several real
world datasets. The results show excellent performance
gains. They show that AAMP and ACAMP-optimized
are significantly faster than the state-of-the-art algorithms
for matrix profile computation. They also illustrate the
utility of detecting discords/outliers in datasets by using
AAMP based on the non-normalized Euclidean distance

over STOMP, SCRIMP and SCRIMP++ that are based
on the z-normalized Euclidean distance.

It is worth mentioning that our algorithms, i.e., AAMP and
ACAMP, are exact, anytime and incrementally maintainable.
They take a deterministic execution time that only depends on
the time series and subsequence length.

The rest of this paper is organized as follows. In Section
2, we give the problem definition. In Section 3, we describe
our AAMP algorithm for computing matrix profile with non-
normalized Euclidean and p-norm distances. In Section 4,
we propose the ACAMP algorithm for z-normalized distance.
Section 5 presents the experimental results. Section 6 discusses
related work and Section 7 concludes the article.

2 PROBLEM DEFINITION

In this section, we give the formal definition of the matrix
profile, and describe the problem which we address in this
article.

Definition 2.1. A time series T is a sequence of real-valued
numbers T = 〈t1, . . . , tn〉 where n is the length of T .

A subsequence of a time series is defined as follows.

Definition 2.2. Let m be a given integer value such that 1 ≤
m ≤ n. A subsequence Ti,m of a time series T is a continuous
sequence of values in T of length m, starting from position i.
Formally, Ti,m = 〈ti, . . . , ti+m−1〉 where 1 ≤ i ≤ n−m+1.
We denote i as the start position of Ti,m subsequence.

For each subsequence of a time series, we can compute its
distance to all subsequences of the same length in the same
time series. This is called a distance profile.

Definition 2.3. Given a query subsequence Ti,m, a distance
profile Di of Ti,m in the time series T is a vector of the

3

distances between Ti,m and each subsequence of length m in
time series T . Formally, Di = 〈di,1, . . . , di,n−m+1〉, where
di,j is the distance between Ti,m and Tj,m.

Note that the term distance in Definition 2.3 does not refer
to the mathematical definition of distance. It only gives a
measure on the difference between two subsequences. For
instance the z-normalized Euclidean distance does not satisfy
the (mathematical) axioms of a distance. A matrix profile is
a vector that represents the minimum distance between each
subsequence and all other subsequences of a time series T .

Definition 2.4. Given a subsequence length m, the matrix
profile of a time series T is a vector P = 〈p1, . . . , pn−m+1〉
such that pi is the minimum distance between the subsequence
Ti,m and all other subsequence of T , for 1 < i < n−m+ 1.
In other words, pi = min(Di), i.e., pi is the minimum value
in the distance profile of Ti,m.

We are interested in the efficient computation of matrix
profile using following three different distance measures: 1)
Euclidean distance; 2) p-norm distance that is a generalization
of Euclidean distance; 3) z-normalized Euclidean distance.

Definition 2.5. The Euclidean distance between two subse-
quences Ti,m and Tj,m is defined as:

Di,j =

√√√√m−1∑
l=0

(ti+l − tj+l)2 (1)

In this paper, sometimes we call the Euclidean distance as
non-normalized (classical) Euclidean distance.

Definition 2.6. Let p > 1 be a positive integer, then the p-
norm distance between two subsequences Ti,m and Tj,m is
defined as:

DPi,j =
p

√√√√m−1∑
l=0

(ti+l − tj+l)p (2)

The z-normalized Euclidean distance between two subse-
quences is defined as follows.

Definition 2.7. Let µi and µj be the mean of the values in
two subsequences Ti,m and Tj,m respectively. Also, let σi
and σj be the standard deviation of the values in Ti,m and
Tj,m respectively. Then, the z-normalized Euclidean distance
between Ti,m and Tj,m is defined as:

DZi,j =

√√√√m−1∑
l=0

(
ti+l − µi

σi
− tj+l − µj

σj

)2

(3)

A shapelet is a subsequences that can maximally represent
the class of a time series. The matrix profile can be used for
shapelet detection (see Section SM: .2). Let us define the joint
matrix profile of two time series that is needed for explaining
the shapelet discovery using matrix profile.

Definition 2.8. Let m be the subsequence length, and A and
B be two time series of length n. The joint matrix profile of
A with B is a vector PAB = 〈p1, . . . , pn−m+1〉 such that pi
is the minimum distance between the subsequence Ai,m and

all subsequence of time series B.

3 AAMP
In this section, we propose the AAMP algorithm for comput-
ing matrix profile by using the Euclidean distance. At first,
we present the formula for incremental computation of the
Euclidean distance and then propose the AAMP algorithm
which uses this formula for computing matrix profile.

3.1 Incremental Computation of Euclidean Distance
Here, we present a formula that allows us to compute the
Euclidean distance between two subsequences Ti,m and Tj,m
based on the Euclidean distance of subsequences Ti−1,m and
Tj−1,m. The formula is presented by the following lemma.

Lemma 1. Let Di,j be the Euclidean distance between two
subsequences Ti,m and Tj,m. Let Di−1,j−1 be the Euclidean
distance between two subsequences Ti−1,m and Tj−1,m. Then
Di,j can be computed as:

Di,j =
√
D2
i−1,j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2

(4)

Proof. Let Ti,m = 〈ti, ti+1, . . . , ti+m−1〉 and
Tj,m = 〈tj , tj+1, . . . , tj+m−1〉. Then the square of the
Euclidean distance between Ti,m and Tj,m is computed as:

D2
i,j =

m−1∑
l=0

(ti+l − tj+l)2 (5)

And the square of the Euclidean distance between Ti−1,m

and Tj−1,m is:

D2
i−1,j−1 =

m−1∑
l=0

(ti−1+l − tj−1+l)
2 (6)

By comparing Equations (5) and (6), we have:

D2
i,j = D2

i−1,j−1 − (ti−1 − tj−1)
2 + (ti+m−1 − tj+m−1)

2

(7)

Thus, we have:

Di,j =
√
D2
i−1,j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2

(8)

By using the above equation, we can compute the Euclidean
distance Di,j by using the distance Di−1,j−1 in O(1).

3.2 Algorithm
The main idea behind AAMP is that for computing the dis-
tance between subsequences, it uses diagonal sliding windows,
such that in each sliding window, the Euclidean distance is
computed only between the subsequences that have a precise
difference in their starting positions. These sliding windows
allow us to use Equation (4) for efficient distance computation.

Algorithm 1 shows the pseudo-code of AAMP (for now,
ignore the violet colored lines). Initially, the algorithm sets all

4

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

SW1

Iteration 1

SW2

Iteration 2

SW3

Iteration 3

SW4

Iteration 4

SW2

Iteration 2

SW1

Iteration 1

SW3

Iteration 3

SW2 SW1 SW3

Iteration 1 Iteration 2 Iteration 3

Diagonal Shift 1

Diagonal Shift 2

(a)

SSq 1 SSq 2 SSq 3 SSq 4 SSq 5 SSq 6 SSq 7

SSq 1 1 2 3 4 5 6

SSq 2 1 1 2 3 4 5

SSq 3 2 1 1 2 3 4

SSq 4 3 2 1 1 2 3

SSq 5 4 3 2 1 1 2

SSq 6 5 4 3 2 1 1

SSq 7 6 5 4 3 2 1

 SSq = Sub-Sequence

(b)

Figure 2: a) Example of AAMP execution on a time series of length n = 10, and with subsequence length m = 4. The total
number of subsequences is n − m + 1 = 10 − 4 + 1 = 7. In iteration k, the distances between the subsequences that are
k positions apart from each other are computed. The first distance in each iteration is computed using the normal Euclidean
distance function in O(m), and the other distances are computed incrementally in a constant time. b) The subsequences are
arranged in a matrix to better understand the functioning of AAMP algorithm. By looking at the cells of the matrix, we can
see in which iteration, the distance of two subsequences is calculated. Different iterations are represented by different colors.

values of the matrix profile array to infinity (i.e., maximum
distance) and the matrix profile index array to 1. Then, it
performs n−m iterations using a variable k (1 ≤ k ≤ n−m).
In each iteration of k, the algorithm calculates distance be-
tween ith subsequence (i.e. Ti,m) and the subsequence which
is k positions apart from it, i.e., Ti+k,m+k. The value of i is
primarily taken as 1 then it iterates from 2 to n−m+ 1− k
values in Line 13.

In each iteration k, AAMP firstly computes the Euclidean
distance of the 1st subsequence of the time series, i.e., T1:m,
with the one that starts at k positions from it, i.e. subsequence
Tk+1:m+k The first distance computation is done using the
classical formula of Euclidean distance, i.e. using Equation (1)
(see Line 6). Then, in a sliding window, the algorithm incre-
mentally computes the distance of other subsequences with
the subsequences that are k position apart from them (i.e. 2nd

with 3rd subsequence, 3rd with 4th subsequence etc.), and
this is done in O(1) time. If the computed distance is smaller
than the existing distance value in the matrix profile array
P , then the smaller distance is saved in the matrix profile
along with it’s index (see Lines 7 − 12 and 15 − 20). Note
that, we use the property that the distance between ith and
jth subsequences is equal to the distance between jth and
ith subsequences; i.e. disti,j = distj,i (see Lines 8 − 9 &
11 − 12; and Lines 16 − 17 & 19 − 20). In AAMP, we use
square of the Euclidean distances for comparing the distances
of different subsequences (see Lines 6 and 14), and at the
end of the algorithm, square of these distances is replaced by
taking the sqrt to obtain the real distances in the matrix profile
(see Line 22). This reduces the number of sqrt operations done
during the execution of the algorithm.

Example 1. Figure 2a shows an example of executing AAMP
over a time series of length n = 10 and for subsequences
of length m = 4. In iteration 1, the first Euclidean dis-
tance is calculated between T1,m and T2,m and the sliding
window SW1. Then the sliding window moves to the next
subsequences (i.e. sliding window SW2), and incrementally
computes the distance between T2,m and T3,m by using the
Equation (4) in O(1) time. Then, the sliding window moves to

the next subsequences and computes their distances, i.e., T3,m
and T4,m. This distances computation process continues for all
the subsequence pairs, which are 1 element/index apart from
each other’s starting positions. For iteration 1, the distances
computed between all the subsequence pairs are marked by
yellow color in the matrix shown in Fig. 2b.

In iteration 2, the Euclidean distance is computed between
each subsequence and the one which is 2 elements/indexes
apart (follow the bottom image in Fig. 2a). Thus, we calculate
the distances between subsequence 1 & 3 followed by the
distance between subsequence 2 and 4 etc. (shown by black
colored cells in the matrix of Fig. 2b). Note that, in each
iteration the first distance is computed using the classical Eu-
clidean distance formula and the other distances are computed
by using the incremental formula.

By looking at the cells of the matrix in Fig. 2b, we can see in
which iteration, the distance of two subsequences is calculated.
Different iterations are represented by different colors.

3.3 Complexity Analysis

The AAMP algorithm contains two loops. In the 1st loop (Line
6), the distance between T1,m and Tk,m is computed by using
the normal Euclidean distance function in O(m) time, thus in
total, Line 6 is executed in O(m × (n − m)). In the nested
loop (Lines 13 − 20), all operations are done in O(1), so in
total these operations are done in O((n−m)2). Thus, the time
complexity is O((n−m)2)+m×(n−m)) which is equivalent
of O(n× (n−m)). If n >> m, then the time complexity of
AAMP can be written as O(n2). But, if m is very close to
n, i.e., m = n − c for any small constant c, then the time
complexity is O(n). The space needed for our algorithm is
only the array of matrix profile and some simple variables.
Thus, the space complexity is O(n).

3.4 Extension of AAMP to p-Norm Distance

In this section, we extend the AAMP algorithm to the p-norm
distance that is a more general form of distance computation
than Euclidean distance formula. The p-norm functions are

5

Algorithm 1: AAMP algorithm: matrix profile with
Euclidean distance
Input: T : time series; n: length of time series; m:

subsequence length
Output: P : Matrix profile; I: Matrix profile Indexes;

1 begin
2 for i=1 to n-m+1 do
3 P[i] = ∞ . initialize the matrix profile
4 I[i] = 1 . initialize the matrix profile indexes

5 for k=1 to n-m do
6 dist = Euc Distance(T1:m, Tk+1:m+k)

2 .
compute square of the distance between 1st i.e.
T1:m and (k + 1)th i.e. Tk+1:m+k subsequences

7 if dist < P [1] then
8 P [1] = dist
9 I[1] = k + 1;

10 if dist < P [k + 1] then
11 P [k + 1] = dist
12 I[k + 1] = 1

// if k + 1 == n−m+ 1 then
// B[1] = dist . if we are computing the

distance between 1st and last sub-sequence

13 for i=2 to (n−m+ 1− k) do
14 dist =

(dist− (ti−1 − ti−1+k)
2 + (ti+m−1 − ti+m+k−1)

2

15 if dist < P [i] then
16 P [i] = dist
17 I[i] = k + i

18 if dist < P [i+ k] then
19 P [i+ k] = dist
20 I[i+ k] = i

// if i+ k == n−m+ 1 then
// B[1, 1] = dist . if we are computing the

distance with last sub-sequence

21 for i=1 to n-m+1 do
22 P [i] =

√
P [i]

used in Lebesgue spaces (LP), which are useful in data
analysis in physics, statistics, finance, engineering, etc.

Let Ti,m and Tj,m be two time series subsequences, then
their p-norm distance (for p > 1) is defined as:

DPi,j =
p

√√√√m−1∑
l=0

(ti+l − tj+l)p (9)

Notice that the Euclidean distance is a special case of p-
norm with p = 2. The following lemma gives an incremental
formula for computing PNORMi,j .

Lemma 2. Let DPi,j be the p-norm distance of subsequences
Ti,m and Tj,m. Then, DPi,j can be computed by using the p-
norm distance of subsequences Ti−1,m and Tj−1,m, denoted
by DPi−1,j−1, as:

DPi,j =
p

√
(DPi−1,j−1)p − (ti−1 − tj−1)p + (ti+m−1 − tj+m−1)p

Proof. The proof can be easily done in a similar way
as that of Lemma 1. Using Lemma 2, we can modify the
AAMP algorithm to compute the matrix profile with the p-
norm distance. This can be done just by modifying two lines
in Algorithm 1: i) in Line 6 we replace the Euclidean distance
with p-norm distance between the subsequences; i.e. T1,m and
Tk,m; ii) in Line 14, we incrementally compute the p-norm
distance using Lemma 2.

The time and space complexity of the AAMP algorithm
for p-norm is the same as that of AAMP with the Euclidean
distance.

4 ACAMP: MATRIX PROFILE FOR Z-
NORMALIZED EUCLIDEAN DISTANCE

In this section, we propose an algorithm, called ACAMP,
that computes matrix profile based on the z-normalized Eu-
clidean distance and using the similar principle as AAMP, i.e.,
incremental distance computation by using diagonal sliding
windows.

4.1 Incremental Computation of Z-Normalized Eu-
clidean Distance

Let us now explain how ACAMP computes the z-normalized
Euclidean distance incrementally. Let Ti,m = 〈ti, . . . , ti+m−1〉
and Tj,m = 〈tj , . . . , tj+m−1〉 be two subsequences of a time
series T . In ACAMP, we compute the z-normalized Euclidean
distance between Ti,m and Tj,m by using the following five
variables:

• Ai =
∑m−1
l=0 ti+l: the sum of the values in Ti,m;

• Bj =
∑m−1
l=0 tj+l: the sum of the values in Tj,m;

• Ai =
∑m−1
l=0 t2i+l: the sum of the square of values in

Ti,m;
• Bj =

∑m−1
l=0 t2j+l: the sum of the square of values in

Tj,m;
• Ci,j =

∑m−1
l=0 ti+l × tj+l: the product of values of Ti,m

and Tj,m.

Note that all above variables can be computed incrementally,
when moving a sliding window from Ti,m to Ti+1,m. Given
these variables, the z-normalized Euclidean distance between
two subsequences Ti,m and Tj,m can be computed using the
formula given by the following lemma.

Lemma 3. Let DZi,j be the z-normalized distance of subse-
quences Ti,m and Tj,m. Then, DZi,j can be computed as:

DZi,j =

√√√√√2m

1−
Ci,j − 1

mAiBj√(
Ai − 1

mA
2
i

) (
Bj − 1

mB
2
j

)
 (10)

The proof of Lemma 3 can be seen in Section SM: .1 of
the Supplementary Materials.

6

Algorithm 2: ACAMP algorithm: matrix profile cal-
culation with z-normalized Euclidean distance

Input: T: time series; n: length of time series; m:
subsequence length

Output: P: Matrix profile; I: Matrix profile Indexes;
begin

for i=1 to n-m+1 do
P[i] = ∞; I[i] = 1

for k=1 to n-m do
A =

∑m−1
l=0 t1+l . sum of the values in T1,m

B =
∑m−1
l=0 t1+k+l . sum of the values in

T1+k,m
A =

∑m−1
l=0 t21+l . sum of the square of values

in T1,m
B =

∑m−1
l=0 t21+k+l . sum of the square of

values in T1+k,m
C =

∑m−1
l=0 t1+ltk+l . product of values of

T1,m and T1+k,m

dist = 2m

(
1− C− 1

mAB√
(A− 1

mA2)(B− 1
mB2)

)
.

compute the square of z-normalized distance
if dist < P [1] then

P [1] = dist; I[1] = k + 1;
if dist < P [k + 1] then

P [k + 1] = dist; I[k + 1] = 1

for i=2 to n−m+ 1− k do
A = A− ti−1 + ti+m−1;
B = B − ti−1+k + ti+m+k−1;
A = A− t2i−1 + t2i+m−1;
B = B− t2i−1+k + t2i+m+k−1;
C = C−ti−1×ti−1+k+ti+m−1×ti+m+k−1;

dist = 2m

(
1− C− 1

mAB√
(A− 1

mA2)(B− 1
mB2)

)
if dist < P [i] then

P [i] = dist; I[i] = k + i

if dist < P [i+ k] then
P [k + i] = dist; I[k + i] = i

for i=1 to n do
P [i] =

√
P [i] . compute the z-normalized

distance from its square

4.2 Algorithm

The pseudo-code of ACAMP is shown in Algorithm 2. In
Line 4 in a loop, k is iterated from 1 to n −m, and in each
iteration the z-normalized Euclidean distance is calculated
between the subsequences which are k points far from each
other in the time series (Lines 5 to 14). In each iteration, the
distances are computed by using the formula of Equation 10
that uses the five variables i.e., A, B, A, B and C. For each
iteration of k, the distance between two initial subsequence
is calculated (i.e. the distance between T1,m and T1+k,m), by
using the five variables in O(m) time (see Lines 5 to 10).

For the other subsequences, these variables and the distance
are incrementally computed in O(1) time. Note that in the
algorithm, for performance reasons we compare the square of
the z-normalized Euclidean distance of the subsequences (Line
10 and 21). At the end of the algorithm (Lines 26 to 27), in
a loop we convert the square distances to the real distances.

The time and space complexity of ACAMP algorithm is
same as that of of AAMP algorithm, described in Section 3.3.

4.3 More Optimization of ACAMP
In the following section, we propose several optimizations for
the ACAMP Algorithm.

One possible optimization is to move the first calculation
of variables A, A, B, and B (actually done in Lines 7 to 10)
before the loop (i.e., before Line 4). By doing this, firstly, we
can avoid the redundant computation of A & A and B and
B. Then the calculation of distance between the 1st and all
other subsequences can be pre-computed. Hence, we would
just need to incrementally update these variables in the loop
(Lines 16− 20).

We can further optimize ACAMP by not comparing the
square of z-normalized distance in Lines 15, 17, 26 and 28 in
Algorithm 2, but by comparing Fi,j defined as follows:

Fi,j =
(AiBj −mCi,j)× |AiBj −mCi,j|

(Ai − 1
mA

2
i)(Bj − 1

mBj)
, (11)

We can easily show that DZi,j > DZi,k if and only if
Fi,j > Fi,k. In the formula of Fi,j , there is no square
root operation, and its computation takes less time than that
of DZi,j . Thus, for comparing the z-normalized Euclidean
distance of subsequences, we can simply compare their Fi,j .
Then in Line 21 of the algorithm, the following equation can
be used for computing the z-normalized Euclidean distance
DZi,j from Fi,j :

DZi,j = 2m+ 2× sign(Fi,j)×
√
|Fi,j | (12)

4.4 AAMP for streaming data
After discussing about offline version of AAMP algorithm,
here in this section we will talk about AAMP algorithm for
streaming data. The original concept of matrix profile on
streaming data is proposed by Yeh et.al [10]. We apply the
similar idea on AAMP to handle real time streaming data.

In some situations, it is needed to build the matrix profile
incrementally based on the feed of real-time data. It is highly
useful to continuously upgrade the matrix profile for new data
by adjusting the existing matrix profile. In Algorithm 3, we
have illustrated the proposed approach to handle streaming
data. In case of streaming algorithm, it is considered that the
data points arrives one-by-one in a sequential manner. This
algorithm is made on the foundation of Algorithm 1 which
is designed to work in sequential order.

5 PERFORMANCE EVALUATION

In this section, we compare the execution time of our algo-
rithms AAMP and ACAMP with the state-of-the-art matrix

7

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

Sub-sequence Length
10

20

30

40

50

60

70

80

T
im

e
 N

e
e

d
e

d
 (

s
e

c
.)

AAMP

STOMP

SCRIMP

SCRIMP++

ACAMP-Optimized

ACAMP

(a)

20
00

40
00

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

Sub-sequence Length
5

10

15

20

25

30

35

40

T
im

e
 N

e
e

d
e

d
 (

s
e

c
.)

AAMP

STOMP

SCRIMP

SCRIMP++

ACAMP-Optimized

ACAMP

(b)

13
60

0

27
20

0

40
80

0

54
40

0

68
00

0

81
60

0

95
20

0

Time Series Length
0

20

40

60

80

100

120

140

160

T
im

e
 N

e
e

d
e

d
 (

s
e

c
.)

AAMP

STOMP

SCRIMP

SCRIMP++

ACAMP-Optimized

ACAMP

(c)

10
00

0

20
00

0

30
00

0

40
00

0

50
00

0

60
00

0

70
00

0

Time Series Length
0

10

20

30

40

50

60

70

80

90

T
im

e
 N

e
e

d
e

d
 (

s
e

c
.)

AAMP

STOMP

SCRIMP

SCRIMP++

ACAMP-Optimized

ACAMP

(d)

Figure 3: The execution times of six algorithms with increasing the subsequence length (m): a) Execution time of the six
algorithms on a time series of length 68000 (protein dataset). b) Execution time of the six algorithms on a time series of
length 50000 (sheep dataset). The execution time of six algorithms are plotted with the increase of time series length (n): c)
Execution time of the six algorithms on variable time series length (protein dataset) with m = 256. d) execution time of the
six algorithms on variable time series length (sheep dataset) with m = 256.

profile algorithms STOMP, SCRIMP and SCRIMP++ [8]. We
also evaluate the optimized version of ACAMP (using the
optimizations proposed in Section 4.3) called as ACAMP-
Optimized. We first describe the experimental setup, the
datasets used for the performance evaluation and then present
the results of the experiments.

5.1 Setup
We implemented our algorithms in MATLAB 1. For STOMP2

3, SCRIMP4 and Scrimp++4, we used the Matlab code avail-
able from [11] using the step size of PreSCRIMP = 0.25.
The evaluation and tests were carried out on a off-the-shelf
computer with Intel R©Core(TM) TMi7-8850H CPU @ 2.60
GHz ×8 processors, on Ubuntu 18.04 LTS and 32 GB RAM
with the R2019A version of Matlab.

1Our code and data are accessible at: https://sites.google.com/view/aamp-
and-acamp/home

2https://sites.google.com/view/mstamp/
3https://www.cs.ucr.edu/∼eamonn/MatrixProfile.html
4https://sites.google.com/site/scrimpplusplus/

5.1.1 Datasets

The first dataset corresponds to spectrums of 680 dimen-
sions, representing a protein rate measured on 10 different
products: rapeseed (CLZ), corn gluten (CNG), sun flower
seed (SFG), grass silage (EHH), full fat soya (FFS), wheat
(FRG), sun flower seed (SFG), animal feed (ANF), soyameal
set(representsr and whey (MPW). The complete dataset repre-
sents 4075 time series of 680 values (680 elements per time
series).

The second real world dataset corresponds to time series
of 500 dimensions which have been measured by attaching
accelerometer at the neck of some sheep. Acelerometers
captured 3-axial acceleration at a constant rate of 100Hz. The
complete dataset represents 8532 time series of 500 values.

We have also done experiments on several real world
datasets from the UCR Time Series Classification Archive
[12], such as CinCECGTorso, EOGVerticalSigna, EOGHor-
izontalSignal, ArrowHead, etc.

https://sites.google.com/view/aamp-and-acamp/home
https://sites.google.com/view/aamp-and-acamp/home
https://sites.google.com/view/mstamp/
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://sites.google.com/site/scrimpplusplus/

8

(a) (b) (c)

(d) (e) (f)

Figure 4: (a) Top: Time series from CinCECGTorso dataset. The discord is visible in it. Middle: the matrix profile, obtained
by STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b) Time series from EOGVerticalSignal
dataset and corresponding matrix profile by STOMP and AAMP algorithms. (c) Time series from CinCECGTorso dataset
(d) Time series from CinCECGTorso dataset (e) Time series from EOGHorizontalSignal dataset (f) Time series from
EOGVerticalSignal dataset

5.2 Execution time
The first experiment on execution time is performed by
keeping the time series length (n) fixed, and varying the subse-
quence length (m; plotted along X−axis). For this experiment,
we used the protein and sheep datasets. For the protein dataset,
we have used the first 100 time series and concatenated them
to generate a single time series of 68000 (100×680) elements.
In the case of the sheep dataset, we took the first 100 time
series and concatenated them to generate a single time series
of 50000 (100× 500) elements).

The execution times of the six algorithms are plotted in
Fig. 3a and 3b using the protein and sheep datasets respec-
tively. As seen, the execution time of all algorithms decreases
with increasing subsequence length (m). On both databases,
AAMP and ACAMP-Optimized outperform other algorithms.
Until m = 8000, ACAMP is better than STOMP, but for higher
values STOMP behaves better. For very high values of m (e.g.,
when m is close to n), the execution time of all algorithms
gets almost the same, because in these cases there are few
subsequences in the time series. Notice that in practice the
subsequence size is not very high (e.g., less than 4000), and in
these cases the performance of AAMP and ACAMP-Optimized
is significantly better than the state-of-the-art algorithms.

The second experiment is performed by keeping a fixed sub-
sequence length m = 256 (in accordance with the experiments
in related work, e.g. [1] and [2]), and varying the length of

time series, i.e., n. The results for the two datasets are shown
in Fig.3c and 3d. We observe that the execution time of all
algorithms increases linearly with the increase of time series
length. AAMP and ACAMP-Optimized algorithms outperform
the state-of-the-art algorithms, and their performance differ-
ence increases significantly by increasing n. Thus, the bigger
is the time series, the higher is the performance gain of our
AAMP and ACAMP-Optimized algorithms.

5.3 Discord discovery
The AAMP and ACAMP algorithms are capable to detect
the discords (anomalies) from the time series like other ma-
trix profile based algorithms such as STOMP, SCRIMP and
SCRIMP++. The matrix profile generated by ACAMP is ex-
actly the same as the one generated by STOMP, SCRIMP and
SCRIMP++, as all of these techniques use the z-normalized
Euclidean distance. But, AAMP uses non-normalized Eu-
clidean distance, thus the detected discords can be different.
Hence, depending on the user requirements and the domains
of applications, the techniques from both groups can be useful.
An example is shown in Fig. 5a by using two real ECG
datasets [2]. The visible discords (of subsequence length 50)
are marked by red color in these time series. It can be seen
that the anomaly or unusual pattern existing in the first time
series can be detected by AAMP, whereas SCRIMP++ (or
any of the other z-normalized based algorithm) was unable to

9

Algorithm 3: STREAMING AAMP(T , t, m,
PT , IT ,B)
Input: T ; new data point (t); m; calculated matrix

profile (P); associated index profile (I); dot
product vector (C)

Output: The updated matrix profile (Pnew); updated
index profile Inew corresponding to
incremented time series (T stream = [T, t]);

1 IdxsT ← (n−m+ 1); T ← [T, t]; Z← m
2

2 P ← [P, 0]; I ← [I, 0]
3 nSq ← T [(IdxsT + 1) : (n+ 1)]
4 dist = Euc Distance(T1:m, nSq)
5 if dist < P [1] then
6 P [1] = dist
7 I[1] = k + 1;

8 if dist < P [k + 1] then
9 P [k + 1] = dist

10 I[k + 1] = 1

11 B[1] = dist
12 for i=2 to IdxT do
13 dist =

B[i]− (T [i− 1]− T [IdxT])2 + (T [i+m− 1]− T [IdxT +m+])2

14 G← IdxT + 1− i . gap between subsequences
15 if G > Z then
16 Flag = True

17 if dist < P [i] & Flag == True then
18 P [i] = dist
19 I[i] = IdxsT + 1

20 if dist < P [IdxsT + 1] & Flag == True then
21 P [IdxsT + 1] = dist
22 I[IdxsT + 1] = i

23 B[1, i] = dist

2421 for i=1 to IdxsT do
2522 P [i] =

√
P [i]

26 return PT , IT , B

detect it. The reason is due to z-normalization by SCRIMP++.
AAMP is able to take into account the range of values of
the matches with respect to the range of values of the given
subsequence. This is why AAMP does not find a close match
for this unusual subsequence (it’s range of values is mostly
less than −2). In the second time series (top right image in
Fig. 5a) another similar situation is presented where AAMP
was able to correctly detect the discord but SCRIMP++ failed
to locate it.

Figure 4 shows examples of time series from different UCR
datasets, and the matrix profiles generated by AAMP and
STOMP algorithms for the time series. In each time series
there is a visible anomaly (an unusual pattern), which is clearly
detected by the AAMP algorithm, i.e., as high value point in
the matrix profile. But, in the matrix profile generated by the
STOMP algorithm, the anomalies are not visible or hardly

distinguishable from other subsequences.
From the above mentioned experimental evaluations, we

can conclude that our proposed AAMP algorithm shows better
performance in detecting anomalies (and also motifs) in certain
domain of applications, compared to the z-normalization based
algorithms such as STOMP and SCRIMP++. However, in cer-
tain domain of applications, z-normalization based algorithms
are more useful. Then in such cases, it is better to use the
ACAMP-optimized algorithm which has lower execution time
than the state-of-the-art techniques, i.e. STOMP, SCRIMP and
SCRIMP++, and is able to compute exactly the same matrix
profile as the one computed by these algorithms.

5.4 Pros and Cons of Z-normalized over Non-
normalized distance

There are pros & cons of both the z-normalized and non-
normalized Euclidean distances. In this section, we discuss
them.

5.4.1 Range of the matches

The techniques such as STOMP, SCRIMP, SCRIMP++ and
ACAMP are able to find the matches without taking into
account the range of values of the matches. These techniques
only consider the shape of the subsequences (because of z-
normalization), whereas a non-normalized Euclidean distance
based technique, e.g., AAMP, can find the matches from
the same range of values as the given subsequence while
taking into account its shape as well. Some examples of the
matches obtained by STOMP and AAMP are shown in Fig. 1b.
Hence, the z-normalization based techniques are capable of
finding similar shape matches from any range of values, and
can sometimes provide better matches than non-normalized
techniques (see an example in Fig. 6). But when the range of
values of the matches is important, then a technique such as
AAMP is more useful.

5.4.2 Zero standard deviation

It is a quite bothersome problem that the z-normalized dis-
tance of two subsequences returns infinity when the standard
deviation of one of the subsequences is zero (because of
division by zero). This can happen when the signal of a
subsequence remains stable (i.e., all the values are same in the
subsequence). This kind of situation is quite frequent in real
datasets, e.g., during the periods when there is no noticeable
activities. This problem does not exist for AAMP algorithm
(based on the non-normalized Euclidean distance), because no
division is done in its distance formula. An example is shown
in Fig. 5b by using a real seismic dataset where the values of
longitudes and heights are plotted. It can be visible that there
are several places where the signals remain stable, hence the
standard deviation of the subsequences (e.g. of size 50) would
become zero. In these cases, we see that AAMP is able to
detect the outliers by generating the matrix profile (see bottom
images of Fig. 5b). But, the z-normalized based techniques can
not find these anomalies.

10

AAMP Matrix Profile AAMP Matrix Profile

SCRIMP++ Matrix Profile SCRIMP++ Matrix Profile

Time Series Data Time Series Data

Discord Sub-sequence

Discord Sub-sequence

(a)

Longitude Time Series Height Time Series

Matrix Profile of

Longitude Time Series

Matrix Profile of Height

Time Series

D
is

ta
n

ce

D
is

ta
n

ce

Time series index Time series index

(b)

Figure 5: (a) Top: two time series from real ECG dataset. The visible discords in these time series are marked by red color.
Middle: the matrix profile, obtained by SCRIMP++ algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b)
Top: the longitude and height time series of Seismic dataset (outliers are marked by red color); Bottom: the matrix profile
obtained by AAMP algorithm.

Figure 6: Top: First two query sub-sequences from protein
and the third sub-sequence from sheep dataset. Middle: Better
nearest neighbors, obtained by STOMP. Bottom: The nearest
neighbors, obtained by AAMP algorithm.

6 RELATED WORK

Matrix profile has been recently proposed as an efficient
technique for detecting motifs and discords in time series [7],
[13]. In [1], Yeh et al. introduced the theoretical foundations
of matrix profile and proposed a first algorithm, called STAMP
for computing the matrix profile over a time series. It uses a
similarity search algorithm, called MASS [1] that computes
z-normalized Euclidean distance between two subsequences

by using the Fast Fourier Transform (FFT). In [2], Zhu et
al. proposed an algorithm, called STOMP, that is faster than
STAMP. The STOMP algorithm is similar to STAMP but
uses highly optimized nested loop algorithm by applying
repeated calculation of distance profiles in the inner loop.
However, while STAMP must evaluate the distance profiles
in random order (to allow its anytime behavior), STOMP
performs an ordered search. STOMP exploits the locality of
these searches, and reduces the time complexity by a factor of
O(logn). In [8], the authors proposed an extension of STOMP,
called SCRIMP++ (also an anytime algorithm), that usually
converges faster than STOMP for large subsequence lengths.
In [14], Zimmerman et al. proposed an extension of the GPU-
based version of STOMP algorithm [2] by exploiting several
novel insights for motif discovery envelope, using a scalable
framework which can be deployed in commercial cloud based
GPU clusters. To the best of our knowledge, almost all ma-
trix profile algorithms have been developed for z-normalized
Euclidean distance. In this paper, we proposed AAMP for
the non-normalized Euclidean distance. We also proposed
two algorithms for the z-normalized case, i.e., ACAMP and
ACAMP-Optimized, that are significantly faster than the state
of the art algorithms working based on the z-normalized
distance. The ACAMP and ACAMP-Optimized algorithms are
designed based on an efficient incremental technique that does
not need FFT calculations.

7 CONCLUSION

In this paper, we addressed the problem of matrix profile
computation for a general class of Euclidean distances. We first
proposed an efficient algorithm called AAMP for computing
matrix profile for the non-normalized Euclidean distance.
Then, we extended our algorithm for the p-norm distance,

11

which is a general form of Euclidean. Then, we proposed
ACAMP and its optimized version ACAMP-Optimized that
use the same principle as AAMP, but for the case of z-
normalized Euclidean distance. Our algorithms are exact,
anytime, incrementally maintainable, and can be implemented
easily using different languages. To evaluate the performance
of our algorithms, we implemented them, and compared their
performance with the baseline algorithms such as STOMP,
SCRIMP, SCRIMP++. The results show the efficiency of
AAMP and ACAMP-Optimized algorithms for computing
matrix profile based on z-normalized and non-normalized
Euclidean distances. They also illustrate the utility of the
matrix profile generated by the AAMP algorithm for detecting
anomalies in some daatsets, for which the state-of-the-art
algorithms are not useful. Overall, we can conclude that
both z-normalized and non-normalized based matrix profiles
are required for knowledge extraction in a wide range of
applications. In this paper, we proposed efficient techniques
for both of them.

ACKNOWLEDGMENT

We greatly acknowledge the funding from Safran Data Ana-
lytics Lab. The authors are grateful to Inria Sophia Antipolis
- Méditerranée ”Nef” computation cluster for providing re-
sources and support.

REFERENCES

[1] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
D. F. Silva, A. Mueen, and E. J. Keogh, “Matrix Profile {I:} All Pairs
Similarity Joins for Time Series: {A} Unifying View That Includes
Motifs, Discords and Shapelets,” in Proceedings of the International
Conference on Data Mining (ICDM), 2016, pp. 1317–1322. 1, 8, 10

[2] Y. Zhu, Z. Zimmerman, N. S. Senobari, C.-C. M. Yeh, G. Funning,
A. Mueen, P. Brisk, and E. J. Keogh, “Matrix Profile {II:} Exploiting a
Novel Algorithm and GPUs to Break the One Hundred Million Barrier
for Time Series Motifs and Joins,” in Proceedings of the International
Conference on Data Mining (ICDM), 2016, pp. 739–748. 1, 8, 10

[3] Y. Zhu, A. Mueen, and E. J. Keogh, “Matrix profile IX: admissible time
series motif discovery with missing data,” IEEE Trans. Knowl. Data
Eng., vol. 33, no. 6, pp. 2616–2626, 2021. 1

[4] M. Imamura, T. Nakamura, and E. J. Keogh, “Matrix profile XXI:
A geometric approach to time series chains improves robustness,” in
ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
R. Gupta, Y. Liu, J. Tang, and B. A. Prakash, Eds. ACM, 2020, pp.
1114–1122. 1

[5] C.-C. M. Yeh, H. V. Herle, and E. J. Keogh, “Matrix Profile {III:} The
Matrix Profile Allows Visualization of Salient Subsequences in Massive
Time Series,” in Proceedings of the International Conference on Data
Mining (ICDM), 2016, pp. 579–588. 1

[6] H. A. Dau and E. J. Keogh, “Matrix Profile {V:} {A} Generic
Technique to Incorporate Domain Knowledge into Motif Discovery,” in
Proceedings of the International Conference on Knowledge Discovery
and Data Mining (KDD), 2017, pp. 125–134. 1

[7] Y. Zhu, C. M. Yeh, Z. Zimmerman, and E. J. Keogh, “Matrix profile
XVII: indexing the matrix profile to allow arbitrary range queries,” in
36th IEEE International Conference on Data Engineering, ICDE 2020,
Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp. 1846–1849. 1,
10

[8] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Inter-
active Speeds,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, nov 2018, pp. 837–846. 1, 7, 10

[9] A. Mueen, Y. Zhu, M. Yeh, K. Kamgar, K. Viswanathan, C. Gupta,
and E. Keogh, “The fastest similarity search algorithm for time series
subsequences under euclidean distance,” August 2017, http://www.cs.
unm.edu/∼mueen/FastestSimilaritySearch.html. 1

[10] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
Z. Zimmerman, D. F. Silva, A. Mueen, and E. Keogh, Time series joins,
motifs, discords and shapelets: a unifying view that exploits the matrix
profile. Springer US, 2018, vol. 32, no. 1. 6

[11] “Website of SCRIMP++ .” [Online]. Available: https://sites.google.com/
site/scrimpplusplus 7

[12] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, Yanping, B. Hu, N. Begum, A. Bagnall,
A. Mueen, G. Batista, and Hexagon-ML, “The ucr time series classi-
fication archive,” October 2018, https://www.cs.ucr.edu/∼eamonn/time
series data 2018/. 7

[13] Z. Zimmerman, N. S. Senobari, G. J. Funning, E. E. Papalexakis,
S. Oymak, P. Brisk, and E. J. Keogh, “Matrix profile XVIII: time series
mining in the face of fast moving streams using a learned approximate
matrix profile,” in IEEE International Conference on Data Mining
(ICDM). IEEE, 2019, pp. 936–945. 10

[14] Z. Zimmerman, K. Kamgar, Y. Zhu, N. S. Senobari, B. Crites, and
G. Funning, “Scaling Time Series Motif Discovery with GPUs : Break-
ing the Quintillion Pairwise Comparisons a Day Barrier.” 10

[15] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover,
Q. Zhu, J. Zakaria, E. Keogh, U. C. Riverside, W. Hospital, and
S. Paulo, “Searching and mining trillions of time series subsequences
under dynamic time warping,” Proceedings of the 18th ACM SIGKDD
international conference on Knowledge discovery and data mining -
KDD ’12, p. 262, 2012. 16

Tanmoy Mondal did his Ph.D from Ecole Poly-
technique de l’Université de Tours (EPU), France
in 2015. Before his PhD, he worked at sev-
eral industries and premier R&D centers as a
researcher. Currently, he is doing Post-Doc at
IMT Atlantique, France. His research interests
include time series analysis, pattern recognition,
image processing, and computer vision.

Reza Akbarinia is a research scientist at In-
ria. He received his Ph.D. degree in Computer
Science from the University of Nantes in 2007.
His research focuses on data management and
analysis in large-scale distributed systems (P2P,
grid, Cloud) and data privacy. He has authored
and co-authored two books and several techni-
cal papers in main DB conferences and journals.
He has served as PC member in several confer-
ences, such as SIGMOD, VLDB, ICDE, EDBT,
CIKM, etc.

Florent Masseglia is a scientific researcher in
computer science at Inria since 2002. He works
in Montpellier, in the Zenith team of Inria, on
the analysis of very large scientific data. These
data, derived from observations, experiments
and simulation are indeed complex, often very
large, and are at the heart of important issues to
better understand the studied domains (agron-
omy, biology, medicine).

http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html
https://sites.google.com/site/scrimpplusplus
https://sites.google.com/site/scrimpplusplus
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

12

SUPPLEMENTARY MATERIALS (SM)

SM: .1 Incremental Computation of Z-Normalized
Euclidean Distance - Proof

Here, we present the proof of Lemma 3 and Equation 12 that
gives an incremental formula for computing matrix profile by
using z-normalized Euclidean distance.

Proof. Let µi and µj be the mean of the values in the
sequences Ti,m and Tj,m respectively. Also, let σi and σj
be the standard deviation of the values in the subsequences
Ti,m and Tj,m respectively. Then, the z-normalized Euclidean
distance between the subsequences Ti,m and Tj,m is defined
as:

DZi,j =

√√√√m−1∑
l=1

(
ti+l − µi

σi
− tj+l − µj

σj

)2

(13)

where

µi =
1

m

m−1∑
l=0

ti+l; µj =
1

m

m−1∑
l=0

tj+l (14)

and

σi =

√√√√ 1

m

m−1∑
l=0

t2i+l − (µi)2; σj =

√√√√ 1

m

m−1∑
k=0

t2j+l − (µj)2.

(15)
We can write the square of DZ as following:

DZ2
i,j =

∑m−1
l=0

(
ti+l−µi

σi
− tj+l−µj

σj

)2
=
∑m−1
l=0

((
ti+l−µi

σi

)2
− 2

(
ti+l−µi

σi

)(
tj+l−µj

σj

)
+
(
tj+l−µj

σj

)2)
=
∑m−1
l=0

(
t2i+l−2ti+lµi+(µi)

2

(σi)2
− 2(

ti+ltj+l−µitj+l−ti+lµj+µjµi

σiσj

)
+

t2j+l−2tj+lµj+(µj)
2

(σj)2
)

(16)
Let

Ai =
∑m−1
l=0 ti+l; Bj =

∑m−1
l=0 tj+l; Ai =

∑m−1
l=0 t2i+l;

Bj =
∑m−1
l=0 t2j+l; Ci,j =

∑m−1
l=0 ti+ltj+l.

(17)
Then, we have:

µi =
1
mAi, µj =

1
mBj (18)

(σi)
2 = 1

mAi − 1
m2A

2
i , (σj)

2 = 1
mBj − 1

m2B
2
j .

(19)
Then, the z-normalized Euclidean distance can be written as:

DZ2
i,j =

∑m−1
l=0 (

t2i+l−2ti+lµi+(µi)
2

(σi)2

−2
(
ti+lbj+l−µitj+l−ti+lµj+µjµi

σiσj

)
+

t2j+l−2tj+lµj+(µj)
2

(σj)2
)

=
Ai−2A2

i
1
m+

A2
i

m
1
mAi− 1

m2A
2
i

− 2× Ci,j− 2
mAiBj+

AiBj
m√

(1
mAi− 1

m2A
2
i)(

1
mBj− 1

m2B
2
j)
+

Bj−2B2
j

1
m+

B2
j

m
1
mBj− 1

m2B
2
j

= 2m− 2× m2Ci,j−mAiBj√
(mAi−A2

i)(mBj−B2
j)

= 2m

(
1− Ci,j− 1

mAiBj√
(Ai− 1

mA2
i)(Bj− 1

mB2
j)

)
.

(20)

As mentioned in Subsection 4.4.1, by taking

Fi,j =
(AiBj −mCi,j)× |AiBj −mCi,j|

(Ai − 1
mA

2
i)(Bj − 1

mBj)
, (21)

we have DZi,j = 2m+2sign(Fi,j)×
√
|Fi,j | and we can use

the following equivalence in our algorithm:

DZi,j > DZi,k ⇔ Fi,j > Fi,k.

SM: .2 Shapelet discovery

Here we explain how shapelets can be discovered by matrix
profile, and then show examples of shapelets discovered by z-
normalized and non-normalized matrix profile algorithms from
real datasets.

Consider two time series A and B, having class 1 and 0
as their corresponding class labels. We compute the matrix
profiles of A an B, denoted by PA and PB , and also their
joint matrix profiles PAB and PBA (see the definition of joint
matrix profile in Section 2). The shapelets can be discovered
by calculating the difference in heights of PAB v/s PA (or PBA
v/s PB) which is then used as the indicator of good shapelet
candidates. The idea here is that if a discriminating pattern
is present in A and not in B, then it is highly probable that
we will see a “bump” at the location of this pattern in PAB
(the same is true for PBA also). Hence, when an element-
wise difference (denoted by U = |PA − PAB |) is calculated
between PA and PAB vectors, we will find high values at those
locations where such discriminating patterns (or subsequences)
exist in A (same is true for B, if we look into PB and PBA).

Using time series from the ArrowHead dataset of UCR
Archive, in Fig. 7 (b) and (d) we show the curve of PA
and PAB along with the difference between PA and PAB
plotted in Fig. 7 (c) and (e) for the STOMP and AAMP
algorithms respectively. A significant difference (quantified by
a threshold, shown in dashed line) is observed between the
heights of PA and PAB curves, which intrinsically locates
the occurrence of good candidate shapelets patterns (detected
by STOMP and AAMP algorithms). These difference curves
can serve to locate the patterns that only occur in one of
the two time series (i.e., good candidates for shapelets). This
experiment is performed by randomly choosing 10 time series
and concatenating them. The execution times required by
AAMP to compute PA and PAB are 0.05 and 0.17 seconds
respectively.

Using time series from the ArrowHead dataset of UCR
Archive, in Fig. 7 (b) and (d) we show the curve of PAA
and PAB along with the difference between PAA and PAB
plotted in Fig. 7 (c) and (e) for the STOMP and AAMP
algorithms respectively. A significant difference (quantified by
a threshold, shown in dashed line) is observed between the
heights of PAA and PAB curves, which intrinsically locates
the occurrence of good candidate shapelets patterns (detected
by STOMP and AAMP algorithms). These difference curves
can serve to locate the patterns that only occur in one of
the two time series (i.e., good candidates for shapelets). This
experiment is performed by randomly choosing 10 time series
and concatenating them. The execution times required by

13

(b)

(c)

(d)

(e)

Threshold

Threshold

(a)

Time Series TB

Time Series TA
Shapelets detected by STOMP

Shapelets detected by AAMP

Figure 7: The time series shapelet discovery: (a) Two time se-
ries TA and TB formed by concatenating individual time series
of class 1 and 0 respectively of the ArrowHead dataset. (b)
(d) The matrix profile PAA and PAB by STOMP and AAMP
algorithms respectively. (c) (e) The difference between PAB
and PAA, by STOMP and AAMP algorithms respectively.

AAMP to compute PAA and PAB are 0.05 and 0.17 seconds
respectively.

SM: .3 Better performance of Z-Normalized distance
over non-normalized distance

In the following Fig.8, 9, 10, 11, we have shown some
interesting examples where the z-normalized distance has
performed better than non normalized distance based matrix
profile. The images in Fig.8, shows that z-normalized distance
is able to find more possible locations of outliers by creating
sharper peaks of matrix profile curve, compared to AAMP
based matrix profile.

Whereas, from examples shown in Fig.9, we can visualize
that z-normalized based matrix profiles (by STOMP algorithm)
are able to show better and relevant possible outliers by
detecting multiple and sharper peaks (marked by red circles),
compared to AAMP based matrix profile. The detection of

multiple possible outliers location by z-normalized based
matrix profile would help the data analyst and domain experts
to manually validate it’s legitimacy as they will have more
options of possible outliers.

In Fig.10, 11 also, we show several matrix profile plots
where z-normalized based matrix profile is able to find differ-
ent and extra location of possible outliers (compared to non-
normalized based matrix profile). Some time these detected
outliers by z-normalized based matrix profile are relevant and
some times they are irrelevant. But, it will always give a
handful of extra and different possible outliers locations for
the domain experts.

SM: .4 Independent join using AAMP algorithm

Previously, we have mentioned the self join case i.e. PAA
for any particular time series TA. In this section, we explain
the technique to perform independent join i.e. PAB between
two time series TA and TB . The objective is to perform
the similarity search between Query (e.g. TA) and Target
time series e.g. TB). The pseudo code of independent join
is mentioned in Algorithm 4. The operation of this algorithm
is visually illustrated in Fig. 13 by considering number of
subsequence in TA i.e. IdxsQ = 8 and number of subsequence
in TB i.e. IdxsT = 21. The query and target subsequences
are denoted by QSSq and TSSq respectively. The description
of the algorithm is as follows: the line 1-5 is self-explanatory
and has been described before. In line 6, we initialize two
rows of both the arrays (tempP) and tempI by ∞ and 1
respectively. In line 7, we iteratively perform diagonal jump
of IdxsT−1 ≡ n−m number of times (because there are total
n−m+1 subsequences exists, hence we can’t jump more than
n−m number of times) and for each jump, we calculate the
distance between subsequent query and target subsequences.

For example, when k = 0 (i.e. diagonal jump equals to
zero), the distance is computed between QSSq1 v/s TSSq1
followed by distance computation between QSSq2 v/s
TSSq2 etc. (follow the yellow color cells and “1” symbol
in Fig. 13). Then for k = 1, the distance is computed between
QSSq1 v/s TSSq2 followed by distance computation
between QSSq2 v/s TSSq3 etc. (follow the green color
cells and “2” symbol in Fig. 13) and so on. In this way,
k iterate for IdxsT − 1 number of times i.e we perform
IdxsT − 1 numbers of diagonal jumps. But among all these
jumps, until IdxsT − IdxsQ numbers of diagonal jumps,
we can compute the distance between all the subsequent
query subsequences and corresponding target subsequences
(follow maroon color cells and “14” symbol in Fig. 13 where
distances are calculated between QSSq1 v/s TSSq14,
QSSq2 v/s TSSq15 etc.). If we take any more jumps
after that then we can’t compute the distance between all the
query subsequences and corresponding target subsequences.
This rationale is implemented in line 8-11 of Algorithm 13.
If k ≤ (IdxT − IdxQ) then E is equal to IdxQ which means
that we can compute distance for all the query subsequences
otherwise E is taken as IdxsT−k; that means we can calculate
distance of E number of query subsequences, where in each
iteration, E is obtained by subtracting/removing the already

14

(a) (b) (c)

Figure 8: (a, b, c) Top: Time series from PigAirwayPressure, InlineSkate, InsectEPGSmallTrain dataset respectively.
Middle: the matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 9: (a, b, c, d, e) Top: Various time series from EthanolLevel dataset. Middle: the matrix profile, obtained by STOMP
algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (f) Time series from PigAirwayPressure dataset and
corresponding matrix profile by STOMP and AAMP. These matrix profile plots shows that in several cases, the z-normalized
based (STOMP) algorithm is able to find more clear (sharper peaks, marked by red circles) detection of outliers than AAMP.

taken jumps (i.e. k) from total number of target subsequences
(IdxsT) (follow the bottom yellow colored triangular regions
in Fig. 13).

Now the distance between the 1st query subsequence and
k+1th subsequence of target time series is calculated in line
16 and are saved at pIth row of tempP . The value of pI is
taken as 1 for the very first jump only (k = 0) but for other
jumps, pI is taken as 2. For k > 0, the distance between other
subsequences are iteratively and incrementally calculated in
Line 19-20. In each iteration of Line 19, we incrementally
calculate the distance between ith subsequence of Q and J th

subsequence of T . In line 20, the incremental distance is
calculated by subtracting the term “[tJ−1 − qi−1]”, (which
represents 1st elements of two previous subsequences i.e.
J−1th and i−1th subsequences of T and Q respectively) from
previously computed distance i.e. dist, followed by adding the
term “[tJ+m−1−qi+m−1]” (which represents the last elements
of current subsequences i.e. J th and ith subsequences of T
and Q respectively). Then the calculated distance values and
respective indexes are iteratively updated in Line 22. Except
the 1st jump (i.e. k = 0), for every other jumps (when
k > 0), we first keep the distances at the 2nd row (i.e.

15

(a) (b) (c)

(d) (e) (f)

Figure 10: (a, b, c) Top: Various time series from InlineSkate dataset. Middle: the matrix profile, obtained by STOMP
algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (f) Time series from EthanolLevel dataset and
corresponding matrix profile by STOMP and AAMP.

pI = 2) then compare the previously stored best distances
in 1st row of tempP array. These operation is performed in
“Update Array()” function in Line 22.

After calculating all the distances in left to right direction
(i.e. except the top cells, covered with red colored triangular
region in Fig. 13), the distance calculations are performed
from right to left direction. These operations are visually
represented as red colored region at the top of Fig. 13.
The operations for these cells or the distance computation
between these subsequences of Q and T were not performed
before. In line 23, we perform IdxsQ − 1 number of jumps
iteratively (notice that iJump starts here from 1 instead of 0
because we want to perform distance computations of QSSq8
v/s TSSq7, QSSq7 v/s TSSq6 etc. instead of QSSq8
v/s TSSq8, QSSq7 v/s TSSq7 etc. which were already
computed before). For every jump in Line 23, we initiate the
distance computation between the last query i.e. IdxthQ query
subsequence and tStth subsequence of T . The value of tSt
is computed by k number of jumps from IdxQ number of
subsequences (see Line 24).

In line 28-31, the distance between tStth subsequence from
T and qStth subsequence from Q are iteratively calculated
in an incremental fashion. To calculate the distance incre-
mentally, in line 31, we subtract the term “[ttSt − qqSt]”,
which represents 1st elements of two previous subsequences
i.e. tStth and qStth elements of T and Q respectively from
previously computed distance i.e. dist and adding the term

“[ttSt+m − qtSt+m]”, which represents the last elements of
current subsequences i.e. tSt+mth and qSt+mth elements
of T and Q respectively. Then the calculated distance values
and respective indexes are iteratively updated in Line 32-33.

The visual representation of the query subsequences which
are considered in each iteration are shown as top red colored
region in Fig. 13, where it can be seen that in 1st iteration,
we operate on QSSq8-QSSq2 (follow the blue colored cells)
and in 2nd iteration, we operate on QSSq8-QSSq3 and so
on.

The independent join i.e. JAB computation by ACAMP al-
gorithm can be done by following the same strategy/approach
of calculating the distances between subsequences of query
and target time series as it is done in the case of AAMP
algorithm. The only difference is that here we need to calculate
z-normalized euclidean distance (see violet colored lines in
Algorithm 2) instead of classical euclidean distance. We try
to keep the same line numbering as in Algorithm 4 to keep
the conformity in line numbering. The extra lines, related to
z-normalized euclidean distance computations are numerated
in Roman numerals (i.e. i, ii, iii,) to distinguish them from
the common lines between Algorithm 2 and Algorithm 4.

To calculate the Z-normalized euclidean distance between
two subsequent subsequences, we first compute the mean
(µQ, µT) and standard deviation (σQ, σT) of all the possible
subsequences of T and Q in line i - ii. The distance (in
Line 16) between the 1st (q) and k + 1th (t) subsequence is
calculated by using the means (i.e. µQ and µT) and standard

16

(a) (b) (c)

(d) (e) (f)

Figure 11: (a, b, c) Top: Time series from MixedShapesRegularTrain, PigAirwayPressure, EOGVerticalSignal dataset. The
discord is visible in it. Middle: the matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained by
AAMP algorithm. (d, e, f) Time series from EthanolLevel dataset and corresponding matrix profile by STOMP and AAMP
algorithm respectively.

deviations (i.e. σQ and σT) of q and t respectively. The
incremental Z-normalized distance in Line 20 is calculated
by using means (µq, µt) and standard deviations (σq, σt)
to calculate prod in an incremental manner. The variable
prod is computed by subtracting Q[i − 1] × T [J − 1] term
and by adding Q[i + m − 1] × T [J + m − 1] term with
previously calculated prod value. In this formulation, the
Q[i − 1] and T [J − 1] terms represents the first elements of
previous (i.e. i − 1th and J − 1th) subsequences (where the
current subsequence is represented by ith and J th indexes).
Whereas, the Q[i+m−1] and T [J+m−1] terms represent the
last elements of current i.e. ith and J th subsequences. Then
the distance is calculated by using Equation ??. In the same
manner, we compute the Z-normalized euclidean distance of
qStth and tStth subsequences of Q and T respectively in Line
ix - 27, whereas the incremental euclidean distance between
tStth and qStth subsequences is calculated in Line xii - 32
in the same manner as it was done in Line vi - 20.

SM: .5 Fast Calculation of Mean and Standard Devi-
ation :

The fast calculation of mean (µ) and standard deviation (σ)
of a vector of elements (x) is proposed by Rakthanmanon
et.al [15]. The technique needs only one scan through the
sample to compute the mean and standard deviation of all the
subsequences. The mean of the subsequences can be calculated

by keeping two running sums of the long time series which
have a lag of exactly m values.

µ = 1
m

(∑k
i=1 xi −

∑k−m
i=1 xi

)
σ2 = 1

m

(∑k
i=1 x

2
i −

∑k−m
i=1 x2i

)
− µ2

(22)
In the same manner, the sum of squares of the subsequences
can also be calculated which are used to compute the standard
deviation of all the subsequences by using the Equations 22.

17

(a) (b) (c)

(d) (e) (f)

Figure 12: (a) Top: The randomly chosen time series from CinCECGTorso dataset. The discord is visible in it. Middle:
the matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b) The
randomly chosen time series from EOGVerticalSignal dataset and corresponding matrix profile by STOMP and AAMP
algorithms. (c) Another randomly chosen time series from CinCECGTorso dataset (d) Another randomly chosen time series
from CinCECGTorso dataset (e) The randomly chosen time series from EOGHorizontalSignal dataset (f) Another randomly
chosen time series from EOGVerticalSignal dataset

Q11q1 Q11q2 Q11q3 Q11q4 Q11q5 Q11q6 Q11q7 Q11q8

T11q1 1 22 23 24 25 26 27 28

T11q2 2 1 22 23 24 25 26 27

T11q3 3 2 1 22 23 24 25 26

T11q4 4 3 2 1 22 23 24 25

T11q5 5 4 3 2 1 22 23 24

T11q6 6 5 4 3 2 1 22 23

T11q7 7 6 5 4 3 2 1 22

T11q8 8 7 6 5 4 3 2 1

T11q9 9 8 7 6 5 4 3 2

T11q10 10 9 8 7 6 5 4 3

T11q11 11 10 9 8 7 6 5 4

T11q12 12 11 10 9 8 7 6 5

T11q13 13 12 11 10 9 8 7 6

T11q14 14 13 12 11 10 9 8 7

T11q15 15 14 13 12 11 10 9 8

T11q16 16 15 14 13 12 11 10 9

T11q17 17 16 15 14 13 12 11 10

T11q18 18 17 16 15 14 13 12 11

T11q19 19 18 17 16 15 14 13 12

T11q20 20 19 18 17 16 15 14 13

T11q21 21 20 19 18 17 16 15 14

TSSq = Target Sub-sequence; QSSq = Query Sub-sequence

Figure 13: a) The subsequences of query and target time series
are arranged in a matrix to better understand the functioning
of AAMP algorithm. By looking at the cells of the matrix, we
can see in which iteration, the distance of two subsequences
is calculated. Different iterations are represented by different
colors.

18

Algorithm 4: Independent AAMP
Input: T : target time series; Q: query time series; n:

length of time series T ; Q: length of time
series Q; m: subsequence length

Output: P : Matrix profile; I: Matrix profile Indexes;
begin

IdxT = n−m+ 1 IdxQ = Q−m+ 1
Flag = False
for i = 1 to IdxQ do

P[i] = ∞ I[i] = 1 . initialize two arrays
tempP [1:2, i] = ∞ tempI [1:2, i] = 1

for k = 0 to IdxT − 1 do
if k ≤ IdxT − IdxQ then

E← IdxsQ

else
E← IdxsT − k

if k == 0 then
pI ← 1

else
pI ← 2; Flag = True

dist = Euc Distance(Q1:m, Tk+1:m+k)
tempP [pI, 1]← dist; tempI[pI, 1]← k + 1
for i = 2 to E do

J = k + i
dist =√

(dist2 − (tJ−1 − qi−1)2 + (tJ+m−1 − qi+m−1)2

tempP [pI, i] = dist; tempI[pI, i] = J
if Flag == True then

[tempP, tempI] ←
Update Array (1, E, tempP ,
tempI)

for k = 1 to (IdxQ − 1) do
E = IdxsQ − k; tSt = IdxsQ − k
qSt = IdxsQ
dist =
Euc Distance(QqSt : qSt+m−1, TtSt : tSt+m−1)

tempP [qSt] = dist; tempI[qSt] = tSt;
for i = 2 to E do

tSt = IdxsQ − (i− 1)− k
qSt = IdxsQ − (i− 1)
dist =√

(dist2 − (ttSt − qqSt)2 + (ttSt+m − qqSt+m)2

tempP [pI, qSt] = dist; tempI[pI, qSt] =
tSt

[tempP, tempI] ← Update Array (qSt,
IdxQu, tempP , tempI)

for i = 1 to IdxQ do
tempP [i] =

√
tempP [i]

P [1, :] = tempP [1, :]; I[1, :] = tempI[1, :]

Function Update_Array(st, ed, tempP , tempI):
for p = st to ed do

if tempP [1, p] > tempP [pI, p] then
S = p+ st− 1
tempP [1,S] = tempP [pI,S]
tempI[1,S] = tempI[pI,S]

returntempP, tempI

19

Algorithm 5: Independent ACAMP
Input: T : target time series; Q: query time series; n:

length of time series T ; Q: length of time
series Q; m: subsequence length

Output: P : Matrix profile; I: Matrix profile Indexes;
begin

..
i. [µT , σT]← ComputeMeanStd(T)

. For details, see section SM: .5
ii. [µQ, σQ]← ComputeMeanStd(Q)

7 for k = 0 to IdxT − 1 do
..

iii. q← Q1:m ; t← Tk+1:m+k

iv. µq ← µQ[1] ; µt ← µT [1]
v. σq ← σT [1] ; σt ← σT [1]

16 [dist, prod] =
Z Norm Euc Dis(q, t,m, µq, µt, σq, σt)

17 tempP [pI, 1]← dist; tempI[pI, 1]← k + 1
18 for i = 2 to E do
19 J = k + i
vi. µq ← µQ[i] ; µt ← µT [J]

vii. σq ← σQ[i] ; σt ← σT [J]
viii. prod =

prod− (Q[i− 1]× T [J − 1]) + (Q[i+m− 1]× T [J +m− 1])

20 dist = 2×
(
m− prod−(m×µq×µt)

σq×σt

)
21 tempP [pI, i] = dist; tempI[pI, i] = J

22 if Flag == True then
..

24 for k = 1 to (IdxQ − 1) do
25 E = IdxsQ − k; tSt = IdxsQ − k
26 qSt = IdxsQ
ix. q← QqSt:qSt+m−1 ; t← TtSt:tSt+m−1

x. µq ← µQ[qSt] ; µt ← µT [tSt]
xi. σq ← σT [qSt] ; σt ← σT [tSt]
27 [dist, prod] =

Z Norm Euc Dis(q, t,m, µq, µt, σq, σt)
28 tempP [qSt] = dist; tempI[qSt] = tSt;
29 for i = 2 to E do
30 tSt = IdxsQ − (i− 1)− k
31 qSt = IdxsQ − (i− 1)

xii. µq ← µQ[qSt] ; µt ← µT [tSt]
xiii. σq ← σQ[qSt] ; σt ← σT [tSt]
xiv. prod =

prod− (Q[qSt]× T [tSt]) + (Q[qSt+m]× T [tSt+m])

32 dist = 2×
(
m− prod−(m×µq×µt)

σq×σt

)
33 tempP [pI, qSt] = dist; tempI[pI, qSt] =

tSt
34 [tempP, tempI] ← Update Array (qSt,

IdxQu, tempP , tempI)

37 P [1, :] = tempP [1, :]; I[1, :] = tempI[1, :]

