
Identifying Fraudulent Identity Documents by Analyzing Imprinted
Guilloche Patterns

Musab Al-Ghadi1, Tanmoy Mondal2, Zuheng Ming3, Petra Gomez-Krämer1, Mickaël Coustaty1, Nicolas
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Abstract. Identity document (ID) verification is crucial in fostering trust in the digital realm, especially
with the increasing shift of transactions to online platforms. Our research, building upon our previous
work [1], delves deeper into ID verification by focusing on guilloche patterns. We present two innovative
ID verification models leveraging contrastive and adversarial learning. These models enhance guilloche
pattern detection, offering new insights into identifying counterfeit IDs. Each approach comprises two
main components: (i) guilloche pattern recognition and feature generation using a convolutional neural
network (CNN), and (ii) precise classification of input data as authentic or forged. We evaluate our
models extensively on the MIDV and FMIDV datasets, achieving accuracy and F1-score results ranging
from 68-92% and 75-100%, respectively. Our study, incorporating contrastive and adversarial learning,
contributes significantly to the ongoing discourse on ID verification, specifically in analyzing guilloche
patterns.

Keywords: Information security · Authentication · Identity documents · Contrastive learning · Adver-
sary learning · Guilloche patterns.

1 Introduction

With the increase in internet usage and digitization, digital service providers are required to remotely per-
form several administrative processes e.g. user registration, identity verification, etc. Hence, it is required
to automatically accept and verify administrative documents, such as identity cards, passports, driving li-
censes, etc. We need a secure, straightforward digital identification system to verify digitized administrative
documents. Across the world, governments have been trying different measures to secure various adminis-
trative documents of their citizens from counterfeits and fraud. Several sophisticated security features are
incorporated to combat any forgery style on IDs. These features make it theoretically difficult, if not im-
possible, to produce counterfeit or forged IDs [2]. Holograms, Guilloche pattern, Optically Variable Ink,
Anti-Scan Pattern, Watermark, Micro Type, Encoded Data, and Invisible Fluorescent Fibers are examples
of embedded security features in the IDs. Specifically, the Guilloche is defined as a geometrical pattern of
computer-generated fine lines that are interlaced to form a unique shape [3]. This pattern is an important
feature to confirm the authenticity of a given ID. This may be achieved directly by checking out the confor-
mity of the guilloche pattern in the background of an ID (e.g. passport of the person) and its similarity to
the guilloche pattern of an authentic (real) version of the same country (e.g. passport of France). There exist
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several works on the topic of fraud, anomaly detection, and verification of IDs [4], [5], [6], [7] but no works
exist which aim at the technique of authenticating IDs, based on the guilloche pattern.

In our paper, we introduce two models for detecting anomalies. These models use contrastive and adver-
sarial learning frameworks.

Contrastive learning is a framework that helps to learn a useful representation by using relations between
samples. It helps to identify common attributes between data classes as well as the attributes that differentiate
one data class from another [8], [9]. The embedding spaces of similar samples are positioned close to each
other while dissimilar ones are positioned far away from each other.

Whereas, adversarial learning is a brute force supervised learning procedure where many adversarial
examples are fed into the model which is explicitly labeled as fake samples. There exist many applications
of machine learning that are adversarial. The primary goal is to distinguish instances that are real from
those that are fake. Some of such applications are privacy-concerning [10], data hiding [11], and forgery
detection [8]. Both of the proposed models, i.e., contrastive learning-based and adversarial learning-based
models are designed in a manner to read the entire ID and to recognize the guilloche pattern to check its
similarity against the pattern of an authentic ID of the same country.

The contribution of this paper can be summarized as follows: (i) Novelty: we have proposed two novel
architectures (based on contrastive and adversarial learning) to detect forgery in IDs by using guilloche
patterns. For the contrastive learning-based model, our network incorporates multiple loss functions which
inherently help to improve the performance. Furthermore, for the adversarial learning-based model, we
have proposed a new way of combining adversarial constraints in the network by incorporating the relevant
losses. We also proposed the weighted combination of various losses for these two proposed models. (ii)
Reproducibility: The code is made publicly available so that the results can be reproduced from the original
data set.

The rest of this paper is organized as follows: In Section 2, we present some of the most relevant state-
of-the-art works. Section 3 provides the details of the forgery detection models we propose. Section 4 details
the experimental settings of our models. Experimental results and discussion are drawn in Section 5, while
Section 6 shows the comparative study and discussion. The conclusions are given in Section 7.

Abbreviations

This section includes Table 1 that concisely defines all abbreviations employed throughout the manuscript,
thereby fostering comprehension for readers unaccustomed to the specialized language employed.

2 Related Works

In this section, we explore some of the most relevant state-of-the-art works in five categories as follows.

2.1 Forgery Detection Approaches for IDs Authentication

The work in [1] focuses on guilloche patterns in ID. Two forgery detection models, CFD (Contrastive-based
forgery Detection) and FsAFD (Fake-Sample-Adversary-based forgery Detection), are proposed. Both mod-
els utilize Siamese Neural Networks and aim to validate the authenticity of IDs by comparing guilloche
patterns. CFD employs contrastive learning, while FsAFD utilizes adversarial learning. The research em-
phasizes the significance of guilloche pattern analysis for ID verification in digital environments, enhancing
user trust through efficient forgery detection. In [12] the authors proposed a passport verification approach
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Table 1: The abbreviations
Abbreviation Meaning

ID Identity document
ContFD Contrastive forgery detection model
AdvFD Adversary-based forgery detection model

FFT Fast Fourier transform
LBP Local binary pattern
SSIM Structural similarity

ContFD-e2e End-to-end learning scheme of contrastive forgery detection model
ContFD-dual Dual learning scheme of contrastive forgery detection model
ContFD-FT Fine-tuning learning scheme of contrastive forgery detection model

ContFD-e2e-SW End-to-end learning scheme of contrastive forgery detection model with sub-weights
ContFD-e2e-FW End-to-end learning scheme of contrastive forgery detection model with full-weights

TAR True acceptance rate
FRR False rejection rate
FAR False acceptance rate
ROC Receiver operating characteristics
AUC Area under ROC curve
TP True positive
FP False Positive
FN False negative

SOTA State-of-the-art
GFLOPS Giga-Floating-point operations per second

based on the detection of periodic patterns (i.e., logos) that are printed the Russian passports. The presence
or absence of the periodic patterns on a given passport is studied through k peaks of the FFT to discriminate
between a genuine and a fake passport. In [13], an authentication approach for IDs, based on the conformity
of visual features and patterns is proposed. The approach is based on generating a visual descriptor called
a grid color-connected components descriptor. These descriptors are generated from a set of visual features
that are relevant enough to the color-connected components of the processed ID. The similarity between
the descriptors of a genuine ID and a query ID is measured to decide whether the query ID is genuine or
forged. In [14], the authors proposed a specific classifier to verify the authenticity and legitimacy of IDs. The
classifier module started by extracting local and global features like gray-scale histograms, hue and satura-
tion differences, structural similarity scores, and histograms of oriented gradients from the given ID. Then,
these features are fed into the support vector machine (SVM) and random forest (RF) classifiers to test if the
document is genuine or forged. In [15], the authors proposed two steps to verify the ID. The first step uses
the oriented fast and rotated brief (ORB) method to localize the security features like seal, signature, and
stamp on the processed ID. In contrast, the second step uses optical character recognition and LBP to extract
significant features from the processed ID.

Another solution for ID authentication was designed in [5]. Here, two CNN models called Siamese and
Triplet are adapted to design a technique for ID verification. The role of these models is to extract feature
vectors of a pair of IDs and then the similarity between these vectors is measured to decide the genuineness
of the IDs. The authors of [16] used Siamese, Triplet, and PeleeNet CNN models to design a verification ap-
proach for Spanish IDs. The approach performed a recurrent comparison between two textured background
blocks; one block from the genuine ID and the other from the counterfeit ID. The difference between the
two processed blocks is learned iteratively with an attention model into specific zones in the ID background.
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However, these models are not end-to-end learning models; as they are concerned with specific regions
of the ID to analyze and not whole the ID. The work in [17] aimed to enhance the detection capabilities
of forensic document examiners in combating transnational document fraud. A profiling method is devel-
oped, leveraging visual characteristics of digitized images of fraudulent identity documents in the Interstate
Database of Fraudulent Identity Documents (BIDIF) in Switzerland. The approach involves analyzing gen-
eral and specific characteristics, comparing document numbers, and applying a systematic method for series
detection. The work in [18] focused on the application of a generalized and transversal framework, known
as the Transversal model, to develop forensic intelligence processes for the detection of modus operandi
(M.O.) actions related to false identity documents. The study utilized image processing techniques to profile
and compare visual features in datasets comprising 439 seized documents from various Swiss jurisdictions.
The Transversal model employs feature selection, extraction, and similarity analysis. Two novel works are
proposed for ID verification based on hologram detection [6, 7]. In [6], the approach is based on the shape
and the color analysis thanks to the pixel properties to extract the hologram for a given ID and decide the
presence of the hologram or not. The method of [7] used the LBP descriptor to represent the features of
holograms in the ID and then recognized all hologram patterns to determine whether the ID is genuine. In
Tables 2 and 3, we listed the characteristics, novelty, and pros and cons of various SOTA techniques.

Table 2: Characteristics of forgery detection approaches for ID authentication.

Method Target
application

Target
security object

Processed
dataset/s

Used method/s The performance

[1]
Forgery de-
tection on
IDs

Guilloche ❐ MIDV2020
❐ FMIDV2022

Contrastive and Adver-
sarial deep learning

❐ Accuracy < 65%
❐ Precision < 65%
❐ F1-score < 70%
❐ AUC < 57%

[12] ID verifica-
tion

Periodic pat-
terns like
holograms,
logos

Russian passports FFT Accuracy (in avg.) =
34%

[13] ID verifica-
tion

Specific logo in
the ID

Private dataset
(Italian, French
ID, and French
residence card)

❐ Grid-3CD descrip-
tor

❐ Combination of
image features

❐ SVM

Accuracy > 85%

[14] ID verifica-
tion

Face and visual
color analysis
in the ID.

Colombian ID doc-
uments

❐ Combination of
global and local
image features

❐ SVM and RF

❐ Accuracy > 97%
❐ F1-score > 90%



Identifying Fraudulent Identity Documents by Analyzing Imprinted Guilloche Patterns 5

[15] ID verifica-
tion

Forgery detec-
tion on text,
hologram, and
stamps/seals

Azerbaijani
passport im-
ages (MIDV-500
dataset)

❐ LBP
❐ ORB
❐ Fast from Acceler-

ated Segment
❐ Test (FAST)
❐ CNN

❐ Accuracy< 96%
❐ Precision< 93%
❐ Specificity< 90%

[5] ID verifica-
tion

Photo back-
ground and
specific visual
pattern

Private dataset of
French IDs

Siamese and triplet
CNN

❐ FRR = 1.5%
❐ FAR = 3.2%

[16]
ID and
Banknote
verification

Textured
zones in the
document

❐ Private dataset
of Spanish IDs

❐ Banknotes

❐ Recurrent com-
parator network

❐ AUC ranges 90 −
98%

[17]
Forgery de-
tection on
IDs

Text BIDIF

Inspection verification
for visual characteris-
tics like text mutations,
irregularities in visual
patterns, etc.

❐ TP = 70%
❐ FN = 24%
❐ FP = 7%

[18]
Forgery de-
tection on
IDs

Text

Private dataset
(supplied by
various police juris-
dictions throughout
Switzerland)

❐ Image processing
techniques to pro-
file and compare
visual features
in false identity
documents

❐ Transversal model

❐ FP 0.05− 0.30
❐ AUC > 97%

[6]
Hologram de-
tection for ID
verification

Hologram ❐ MIDV-500
❐ Private dataset

Shape and color analy-
sis of the hologram pix-
els

❐ Precision = 97%
❐ Recall = 92%
❐ F1-score = 94.6%
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[7]

Hologram de-
tection for ID
and currency
banknote ver-
ification

Hologram
❐ Private dataset

of French pass-
ports

❐ Banknotes

Multi LBP model

❐ Precision 38-99%
for hologram 1

❐ Recall 6-53% for
hologram 1

❐ Precision 42-55%
for hologram 2

❐ Recall 5-8% for
hologram 2

Table 3: Novelty, pros & cons of forgery detection approaches for ID authentication.

Method Novelty Pros Cons

[1]
Proposed two forgery detection
models for ID verification based
on guilloche patterns

Introducing of the FMIDV
dataset.

❐ Exhibit unsatisfactory per-
formance in terms of accu-
racy, F1-score, and AUC.

[12]

❐ Introduces a peak-matching
algorithm for comparing
the periodic peaks in the
FFT magnitude against a
known pattern

❐ Flexibility for various peri-
odic patterns

❐ Low complexity

❐ Dependency on knowing
pattern nature

❐ Sensitivity to cropping ac-
curacy

❐ Experimental testing on
Russian citizen passport
images is mentioned only

[13]

❐ Introduces a new visual
descriptor called Grid-3CD
for pattern comparison in
ID verification.

❐ Demonstrates its effec-
tiveness in ID verification
through two strategies:
• unsupervised, based on

a distance measure
• supervised, utilizing a

one-class SVM

❐ Incorporation of color and
spatial information.

❐ The dual approach provides
flexibility in addressing dif-
ferent verification scenar-
ios.

❐ Achieves an average accu-
racy of about 90% in ID
verification.

❐ Dependency on document
class definition: the second
scenario requires defining
verification zones for each
document class.

❐ Limited dataset information
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[14]

❐ Proposes a comprehensive
pipeline for ID acquisition
and verification, address-
ing real-life challenges in
capturing document images
with smartphones.

❐ The use of deep learning,
specifically the UNETS ar-
chitecture, for background
removal.

❐ Combination of global and
local features.

❐ Deep learning for semantic
segmentation.

❐ The paper primarily focuses
on a case study involving
Colombian ID documents.

❐ The success of the template
matching approach is sen-
sitive to variations in docu-
ment header appearance.

[15]

❐ System’s capability to iden-
tify both forged text and
manipulated images.

❐ The use of sliding win-
dow operations in the CNN
training process.

❐ Process complex datasets
and learn from various doc-
ument features thanks to
sliding windows.

❐ Trained only on Azerbaijani
passport images in MIDV-
500.

❐ Assumes that the uploaded
documents are of high qual-
ity.

[5]

❐ Introduces a deep-learning-
based framework for ID
verification.

❐ Allows for the learning
of generic similarity func-
tions, reducing the need
for re-training when dealing
with new types of ID.

❐ Transferable learning: the
Siamese and triplet models
enable the learning of fea-
tures that are transferable to
new, unseen scenarios with-
out requiring extensive re-
training.

❐ Dependency on pre-
alignment.

❐ Focuses on visual-level
document verification, and
its performance may be
influenced by factors like
image quality or lighting
conditions.

[16]

❐ Examines different regions
of security texture back-
grounds to detect counter-
feit documents produced by
the scan-printing operation.

❐ End-to-end solution for de-
tecting counterfeit docu-
ments, focusing on the lack
of background details pro-
duced by the scan-printing
operation.

❐ Introducing a new counter-
feit document dataset.

❐ Dependency on image qual-
ity.

❐ The recurrent comparator
architecture with attention
mechanisms is computa-
tionally expensive.
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[17]

Introduced a novel method for
comparing and profiling fraud-
ulent identity documents (FID)
based on the visual characteris-
tics of digitized images.

❐ Increased detection of se-
ries and links.

❐ Applicability across docu-
ment types and forgery cat-
egories.

Dependency on Visual Charac-
teristics.

[18]

Offering a generalized and
transversal framework for de-
veloping forensic intelligence
processes.

Versatility: the transversal
model’s flexibility is main-
tained by selecting ROIs that
account for both counterfeits
and forgeries, making the
method adaptable to different
types of false IDs.

❐ Higher error rates, particu-
larly elevated FP rates.

❐ Dependency on feature se-
lection.

[6]
A model for ID authentication
by hologram shape and color
analysis.

Real-time Processing: the anal-
ysis is fast and can be performed
in real-time.

❐ Sensitivity to image quality.
❐ The Model’s applicability is

restricted to the authentica-
tion of ID with holographic
patterns.

[7]

Proposed an approach to holo-
gram authentication through
Multi LBP model adapts to
variations in hologram appear-
ance.

❐ No need to choose a single
reference image for each
pattern thanks to the Multi
LBP model.

❐ LBP descriptor robust-
ness against illumination
variations, making the
model suitable for semi-
constrained environments,
such as smartphone-
captured videos.

❐ Real-time processing due to
the small size of the images.

❐ Influenced by the quality of
the captured hologram im-
ages.

❐ The Model’s applicability is
restricted to the authenti-
cation of documents with
holographic patterns.

2.2 Forgery Detection Approaches for Document Authentication

The work in [19] addressed the challenge of document forgery detection, specifically focusing on forged
receipts, using natural language processing (NLP) techniques. The authors propose a regression-based ap-
proach, leveraging a pre-trained language model (CamemBERT) to represent textual content. Additionally,



Identifying Fraudulent Identity Documents by Analyzing Imprinted Guilloche Patterns 9

they enrich the representation with domain-specific ontology-based entities and relations. The study com-
pares various input types, including raw text, extracted entities, and triple-based reformulation of document
content. The experiments utilize a dataset of forged receipts, providing insights into the efficiency of the
proposed methods. The work in [20] introduced a robust approach for detecting copy-move forgery in dig-
ital images, particularly focusing on challenges such as scaling, rotation, and compression forgeries. The
method employs a keypoint-based image forensics approach utilizing a superpixel segmentation algorithm
and Helmert transformation. The process involved keypoint extraction and matching using the SIFT algo-
rithm, clustering and group merging based on spatial distance and geometric constraints, and forgery region
localization and refining using zero mean normalized cross-correlation. The very fast copy-move forgery
detection (VFCMFD) method in [21] addressed the challenge of copy-move forgery detection in digital im-
ages. It introduced a keypoint-based approach using the speeded-up robust features (SURF) detector and a
novel fast feature matching algorithm based on the generalized two nearest-neighbor (g2NN) approach. The
method efficiently extracts key points, performs a match search with reduced complexity, and applies clus-
tering using the DBSCAN (density-based spatial clustering of applications with noise) algorithm to detect
copied-moved areas. The final step involves computing convex hulls to identify forged regions. In Table 4
and 5, we have mentioned the characteristics, novelty, pros & cons of various SOTA techniques under this
category.

Table 4: Characteristics of forgery detection approaches for document authentication.
Method The targeted

application
The targeted

object to analyze
The processed

dataset/s
The used method/s The performance

[19]
Forgery detec-
tion on receipts

Address, Date, and
price on the re-
ceipts.

Find it (Receipt
dataset)

❐ Regression-based ap-
proach

❐ Leveraging a pre-trained
language model (Camem-
BERT)

❐ F1-score = 96.7%
❐ Precision = 93.75%
❐ Recall = 100%

[20]

Copy-move
forgery detec-
tion in digital
images

Textual informa-
tion

❐ CMH series
datasets

❐ D0-D3 series
datasets

❐ CMH5 (com-
pressed
dataset)

❐ Keypoint extraction and
matching via SIFT

❐ Helmert transformation

❐ Recall = 79%
❐ Precision = 86%
❐ FPR = 0.99%
❐ F1-score = 83%

[21]

Copy-move
forgery detec-
tion in digital
images

Textual informa-
tion

4K Ultra HD im-
ages

❐ SURF keypoints detection
❐ Feature-matching al-

gorithm based on the
generalized two-nearest-
neighbor (g2NN)

F1-score>90%
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Table 5: Summaries of forgery detection approaches for document authentication.
Method Novelty Pros Cons

[19]

Introduced a domain-specific ontology for
receipts, explicitly representing the rela-
tionships between entities and providing a
more detailed understanding of the docu-
ment’s structure

❐ Transfer learning from NLP
methods

❐ High performance especially
when using triples as input

Bias in the dataset such as a high
frequency of receipts from a spe-
cific company (Carrefour)

[20]

Incorporated keypoint-based forensics, ad-
vanced clustering and merging strategies,
and robust forgery region localization tech-
niques to achieve accurate and reliable
copy-move forgery detection in digital im-
ages

❐ Robustness against transfor-
mations

❐ Forgery localization accuracy

❐ Threshold dependence
❐ Computational complexity

when dealing with high-
resolution images

[21]
Introducing a new fast feature-matching
algorithm based on the generalized two-
nearest-neighbor (g2NN) approach

❐ Fast computation
❐ Applicability to large images
❐ Robust keypoint extraction

Dependency on parameters (e.g.,
thresholds for angles, distances, and
radius).

2.3 Quality Detection Approaches for Document and ID Authentication

The work in [22] introduced CheckScan, a document liveness detection method for ID verification, focusing
on quality verification. The proposed approach involves FFT-based feature extraction and reference hashing
to discriminate between original ID templates and scanned versions. The feature extraction identifies dis-
criminative FFT peaks, while the hash construction step maps these peaks into binary codes using a novel
quantization scheme. The work in [23] focused on detecting forgeries in paper documents, particularly those
created using the scan-edit and print (SEP) technique, where genuine documents are digitized and manipu-
lated using image processing software. The authors propose an automatic forgery detection method based on
intrinsic features at the character level. The approach involves outlier character detection in a discriminant
feature space and identifying strictly similar characters. The method utilized shape descriptors and features
like character size, principal inertia axis, and horizontal alignment for forgery detection. The work in [24] fo-
cused on automatic document authentication through the Delaunay layout descriptor (DLD), a method based
on spatial relationships of document regions. The authors propose a refined matching algorithm for the DLD,
combining global and local matching to address issues with different numbers of segmented regions in au-
thentic copies. In Tables 6 and 7, we have provided details on the characteristics, novelty, advantages, and
disadvantages of various SOTA techniques.

2.4 Contrastive Learning-based Approaches

An anomaly detection model, based on contrastive learning is proposed in [4]. This work, which represents
a scheme of self-supervised learning, adopts two steps to detect cut-paste defects in local regions of an im-
age without anomalous data; the first step aims to learn deep representations from normal data based on
contrastive learning, and the second step is to build a generative one-class classifier by using the learned rep-
resentations. In [8], a novel decoder-encoder framework for forgery detection is introduced which consists of
three components: a generative network, a contrastive network, and a mutual information estimator. The gen-
erative network (i.e., decoder) learns by mapping the latent vector to a high-dimensional image space, while
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Table 6: Characteristics of quality detection approaches for ID/document authentication.
Method The targeted

application
The targeted

object to analyze
The processed

dataset/s
Used

method/s
Performance

[22]
Original or
scan ID verifi-
cation

Quality of Guil-
loche pattern

MIDV2020
❐ FFT
❐ Hashing Accuracy > 95%

[23]

Forgery detec-
tion on scan-
edit and print
documents

Text
A synthetic fraud-
ulent document

❐ Shape descriptors
❐ Intrinsic features at

the character level

❐ Recall = 22.0− 100%
❐ Precision = 28.0− 70.0%

[24]

Printed and
scanned docu-
ment authenti-
cation

Text
❐ LayoutCopies
❐ DocCopies

Refined Delaunay layout
descriptor

❐ FN = 0.011 (printed and
scanned layouts)

❐ FP = 0.0 (printed and
scanned layouts)

❐ FN = 0.3978 (real docu-
ment dataset)

❐ FP = 0.0029 (real docu-
ment dataset)

r

Table 7: Summaries of quality detection approaches for ID/document authentication.
Method Novelty Pros Cons

[22]

Introduced a novel reference hashing
method to discern between the original
template of an ID image and its scanned
version

❐ Discrimination capability
❐ FFT-based feature extraction

and a novel quantization
scheme, contribute to a well-
anti-collision capability for
distinct IDs

❐ An assumption on reference
blocks

❐ Model’s specificity is evalu-
ated only on the MIDV dataset

[23]

Introduced an automatic forgery detec-
tion method for paper documents based
on intrinsic features at the character
level

❐ Applicability to various docu-
ment types

❐ Adaptive threshold

❐ Lack of real-world data
❐ The method relies on certain

assumptions, such as the ex-
istence of misalignments or
skew in forged documents

[24]

Addressing the limitation of the DLD,
which fails to match authentic copies
with originals when the number of seg-
mented regions differs between the doc-
uments.

❐ Improved matching perfor-
mance

❐ Stability and robustness factors

❐ Limited tolerance to region
variations

❐ Dependency on parameters
such as similarity thresholds
and quantization factors
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the contrastive network (i.e., encoder) maps a positive/negative image to local feature maps and a global
latent feature. The mutual information estimator is used to distinguish between the features from the target
samples and their corresponding hard negative samples to effectively learn more discriminating latent feature
presentation. The proposed framework helps to overcome the problems of generative adversarial networks
and self-supervised approaches like instability training, mode dropping, and low discriminative ability. Fur-
thermore, in [9], a simple approach based on contrastive learning of visual representations is proposed. The
framework consists of three components : (i) data augmentations for enhancing contrastive predictions, (ii)
nonlinear transformation between the representation and contrastive loss to improve the quality of learned
representations, and (iii) contrastive learning. These three components are combined for effective visual
representation learning. For further exploration of image recognition and contrastive learning, we refer the
reader to the following works [25–29].

2.5 Adversarial Learning-based Approaches

More recent research in the literature has been focused on the provision of adversarial training for differ-
ent applications. In [30], a novel anomaly detection technique is proposed by employing a framework of
encoder-decoder-encoder sub-networks which is based on a conditional generative adversarial network. The
generation of high-dimensional image space and the inference of latent space are jointly learned to help the
model learning and the data distribution for the normal samples. In the domain of data hiding, the adver-
sarial network is applied [11] to encode a rich amount of useful information (secret message) as invisible
perturbations in the encoded image. This technique jointly trains the encoder and the decoder; the encoder
produces a visually indistinguishable encoded image by using the given input message and cover image, and
the decoder works to extract the original message from the encoded image. The adversary network works
to improve the quality of an encoded image by minimizing the ability of an adversary to distinguish the
encoded images.

3 Proposed Models

In this paper, we propose two models to distinguish between forged and non-forged documents in the first
paradigm. In the second paradigm, we aimed to learn how to differentiate between real and fake IDs. The first
proposed model learns the representations in a contrastive learning manner, named the contrastive forgery
detection model (ContFD), and the second model learns the representations based on an adversarial setting,
named the constrained adversary-based forgery detection model (AdvFD).

3.1 ContFD Model: Contrastive-based Forgery Detection Model

This model employs an encoder-decoder-classifier sub-network which enables the model to map the input
image into a lower-dimension feature vector, and then reconstruct the output image. The objective of the
classifier is to classify the input image into a real or a fake image.

An encoder network Eθ(.), parameterized by θ, receives a pair of IDs x ∈ X and y ∈ Y and extracts
latent feature vectors zx ∈ Rd×1 and zy ∈ Rd×1 where zx = Eθ(x) and zy = Eθ(y) respectively. These
latent vectors zx and zy are used to compute the contrastive loss (denoted as Lzx,zy,ℓx,ℓy

contrastive) to discriminate be-
tween zx and zy . Here, an image pair (x, y) is fed into the model as input and the objective is to discriminate
between the image pair, where ℓx and ℓy are the labels of input x and y. A decoder network D(.) receives
the latent spaces zx and zy respectively to reconstruct the same input image pair, fed into the encoder. The
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decoder output is given by x̂ and ŷ. The decoder’s objective is to ensure the reconstruction of the input to the
network which inherently operates to generate better latent feature vectors zx and zy which carry a better
representation of the network’s input. We use the point-wise L1 loss and SSIM loss [31] term for image
reconstruction by the decoder. SSIM loss is a commonly used metric for image reconstruction tasks. It has
been recently shown to be a good loss term for depth estimating CNNs [32]. The other part of the model is a
classifier f(.) network, whose task is to classify the latent feature vectors zx and zy into the class of “real”
or “fake”. An overview of the ContFD model is depicted in Figure 1.

Fig. 1: An overview of ContFD for forgery detection of IDs.

3.1.1 ContFD model training The objective of the proposed model is to perform the classification of
IDs by (i) minimizing the distance between the latent spaces (zx and zy) of an input pair of IDs if the pair
belongs to the same class (i.e., the pair of IDs are either real or both are fake), or maximizing the distance
between them if the pair does not belong to the same class (i.e., one ID is real and the other one is fake); (ii)
minimizing the difference between the input and decoded (reconstructed) images; (iii) maximizing the ability
of the classifier f(.) to classify the input pair correctly. Three loss functions are introduced: contrastive loss
(i.e., Lzx,zy,ℓx,ℓy

contrastive), reconstruction loss (i.e., Lx,x̂,y,ŷ
reconstruct), and cross-entropy loss or classification loss (i.e.,

Lℓ
cross) of the classifier f(.).

The contrastive loss is a metric learning loss, which imposes constraints on the distribution of the model’s
inner representation (i.e., latent vectors) of the input data, i.e., the model can learn any features regardless
of whether after transformation the similar latent features would be located close to each other or not. The
contrastive loss enforces the embedding function of the encoder Eθ(.) to learn how to encode features
such that samples from the same classes have similar features, and samples from different classes have
very different ones. In so doing, the contrastive loss helps to minimize the embedding distance between the
embedding spaces (zx, zy) if they are from the same class or instead to maximize the distance between them
if they belong to a different class. Mathematically, the contrastive loss is represented in eq. 1.
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Lzx,zy,ℓx,ℓy
contrastive = {(1−K)×DW

2}+
{K ×max(0, ϵ−DW)2}

(1)

where

DW = ∥zx − zy∥2 , K =

{
0 if [ℓx = ℓy]

1 if [ℓx ̸= ℓy]

The constant ϵ is a margin, defining the lower bound distance between samples of different classes. The
K term here specifies whether ℓx and ℓy are similar then K = 0 or dissimilar then K = 1. The DW term
represents similarity (or, rather, dissimilarity) between the latent feature vectors.

The second loss i.e., reconstruction loss (Lx,x̂,y,ŷ
reconstruct) consists of two terms i.e., Lx,x̂

reconstruct and
Ly,ŷ
reconstruct respectively (see eq. 2). Whereas, each of the Lx,x̂

reconstruct and Ly,ŷ
reconstruct term is consist-

ing of point-wise L1 loss (defined over x v/s x̂ and y v/s ŷ) and the SSIM term which computes the
structural similarity between the input pair (x, y) and the reconstructed pair (x̂, ŷ).

Lx,x̂,y,ŷ
reconstruct = Lx,x̂

reconstruct + Ly,ŷ
reconstruct (2)

where
Lx,x̂
reconstruct = ∥x− x̂∥1 + SSIM(x, x̂)

Ly,ŷ
reconstruct = ∥y − ŷ∥1 + SSIM(y, ŷ)

The third loss i.e., cross-entropy loss (Lℓ
cross) is a metric that is used to measure how well a classification

function f(.) in machine learning performs. With Lℓ
cross we try to maximize the classification accuracy by

using our training data. Mathematically, the cross-entropy loss is expressed in eq. 3.

Lℓx,ℓy
cross = Lℓx

cross + Lℓy
cross (3)

where

Lℓx
cross = −

∑
ℓx∈classes

p(ℓx) log q(ℓx)

Lℓy
cross = −

∑
ℓy∈classes

p(ℓy) log q(ℓy)

and p(ℓ) is the true probability distribution and q(ℓ) is the model’s predicted probability distribution of the
output classes. In the following section, we train the ContFD model in three different schemes by using
distinctive objective functions.

3.1.2 End-to-end learning scheme (ContFD-e2e) End-to-end learning is a technique where the model is
trained to learn a mapping from the input to the output in a single step. The goal is to train a single model
that can handle the entire task without the need for any additional processing or pre-processing. The input
and output data are fed into the model, and the model learns to produce the correct output of a given input.
Here, we train the model by optimizing the total loss. Hence, our objective function is expressed in eq. 4.

Le2e = Lzx,zy,ℓx,ℓy
contrastive + Lx,x̂,y,ŷ

reconstruct + Lℓ
cross (4)
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3.1.3 Dual learning scheme (ContFD-dual) Dual learning, on the other hand, is a technique where two
models are trained simultaneously in a way that they can learn from each other. The goal is to train two
models that can each handle a different aspect of the task and then combine their outputs to produce the
final results. This approach can be especially useful in cases where the input and output data are not easily
connected, or when the task requires multiple steps. Here, we train the model in the following two phases:

Phase 1

We train the model using a partial loss LP1 , then all parameters of the obtained model in this phase are
frozen before starting phase 2. Therefore, the objective function in phase 1 is expressed in eq. 5.

LP1 = Lzx,zy,ℓx,ℓy
contrastive + Lx,x̂,y,ŷ

reconstruct (5)

Phase 2

The model training is continued for supervised classification based on LP2
. Therefore, the objective function

in phase 2 is represented by eq. 6.

LP2 = Lℓ
cross (6)

3.1.4 Fine-tuning scheme (ContFD-FT) Fine-tuning works by using a pre-trained model as a starting
point and then continuing to train it on the new task, typically with a smaller learning rate than was used to
train the original model. The pre-trained model’s weights are used as initialization, and the model is updated
with backpropagation to better fit the new task. The goal is to modify the model so that it is better suited to
the new task, while still retaining the information learned from the original task. Here, the model is trained
in two phases as well:

Phase 1

We train the model using a partial loss LP1 , which is then considered as a pre-trained model before starting
phase 2. Hence, our objective function is the same as in eq. 5.

Phase 2

The learning of the model is done in a supervised manner by optimizing (by fine-tuning) the pre-trained
model that is obtained in phase 1 and takes into consideration Lℓ

cross, which gives the final objective function
as in eq. 4.

End-to-end learning and dual learning are two popular techniques used in machine learning and artificial
intelligence. Both are used to improve the performance of models by optimizing the inputs and outputs of
the system. However, there are some key differences between the two. The fine-tuning technique works to
leverage a pre-trained model and adjusts its weights to better suit a specific task. The goal is to improve the
performance of the model for the new task while still retaining the knowledge learned from the original task.

Likewise, we also perform the analysis of weighted loss functions for all of these proposed “ContFD”
models.
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3.2 AdvFD Model: Adversarial Model for Forgery Detection

The second model is very similar to the network architecture, shown in Fig. 1. The only difference is that the
classifier network f(.) is replaced here by a constrained adversarial model A(.). In the case of this model,
we arbitrarily select the first input x as real (labeled as ℓx:real) and the second input y as fake (labeled as
ℓy:fake). Like a classifier, the adversary network A(.) also predicts whether a given input is real or fake and
this provides the adversarial loss which helps to extract better-quality latent feature vectors. An overview
of the AdvFD model is depicted in Figure 2. Contrary to the classical adversarial model, the proposed
constrained adversarial network is trained in an adversarial way by feeding only the fake images. Training
in this manner not only helps to obtain good-quality image reconstruction but also helps to generate a better
discriminatory latent space (compared to the latent space, generated from real images) of the fake input.
In this manner, we avoid any interference in generating the embedding space (or latent space) from the
real image. We hypothesize that a significant difference/dissimilarity exists between the latent vector zx
(mapped from real image x) and zy (mapped from fake image y). Such dissimilarity between zx and zy
helps the adversarial model to classify.

Fig. 2: An overview of our constrained-adversary-based model (AdvFD).

3.2.1 AdvFD model training As we arbitrarily select the first input x as real and the second input y
as a fake of the whole network, the adversarial technique is adequate to fool the classification process by
taking the latent space zy of the fake input only. By following the principle of adversarial learning, here
also the encoder Eθ(.) learns to minimize the ability of the adversarial network A(.) to correctly detect the
target label (tℓy) of the input y, but rather Eθ(.) learns to maximize the ability of the adversary to detect the
ground truth label (ℓy) of the input y. It is worth noting that the input of the adversarial network is a latent
space zy (generated from a fake image) whose target label (tℓy) is real. Figure 3 depicts an overview of the
constrained adversarial network.
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Fig. 3: Constrained-adversarial network architecture.

Simply speaking, employing the constrained adversarial network enhances the quality of latent spaces
implicitly by maximizing the distance between the latent spaces zx and zy by considering only zy as input.
This leads also to minimizing the difference between the input and the reconstructed image (output of D(.)).
The training process incorporates the following two loss functions, as articulated in eq. 7.

Lx,x̂,y,ŷ,zy
adversarial = Lzy

adv + Lx,x̂,y,ŷ
reconstruct (7)

The first loss is Adversarial loss (Lzy
adv), which operates in an adversarial fashion by penalizing itself

for misclassifying a fake instance (i.e., the latent space) as real and rewarding for correctly classifying the
fake instance as fake. Therefore, the adversarial loss, indicating the discriminator’s capability to detect zy ,
is formulated in eq. 8.

Lzy
adv = log (1−A(zy)) (8)

The second loss is Reconstruction loss (Lx,x̂,y,ŷ
reconstruct) (mentioned before in eq. 2). With the only adver-

sarial loss, the generation of latent spaces by Eθ(.) is not optimized toward learning contextual information
about the input data. Penalizing the generator by measuring this distance between the input and the generated
images, remedies this problem.

Likewise, we also perform the analysis of weighted loss functions for all of these proposed “AvdFD”
models.

4 Experimental Settings

This section details the information about the datasets, a sample of training and testing sets, the experiment
settings, and finally the experimental results of the proposed models.

4.1 Real and Fake Datasets

To evaluate the performance of the proposed approaches, we require real and fake samples of IDs. MIDV-
2020 (mobile identity document video) [33] is used as a dataset has real samples of IDs, and FMIDV4 (forged
mobile identity document video) [1] is used as a dataset that has fake samples of IDs.

MIDV-2020 consists of 1000 unique dummy IDs which contain unique text fields and artificially gen-
erated faces. These dummy IDs are from 10 different countries; i.e., Albania (alb), Azerbaijan (aze), Spain

4 http://l3i-share.univ-lr.fr/2022FMIDV/2022FMIDV.html
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(esp), Estonia (est), Finland (fin), Greece (grc), Latvia (iva), Russia (rus), Serbia (srb), and Slovakia (svk).
Based on these dummy IDs, 2000 scanned images were obtained from the flatbed scanner, and another 1000
images were captured by smartphones. FMIDV consists of 28000 fake IDs of the same 10 countries that
were generated by applying the “copy-move” type of forgeries on the 4000 images i.e., 1000 dummy IDs,
2000 scanned images, and 1000 photos of MIDV-2020.

4.2 Sample of Training and Testing Sets

In the proposed models, the inputs are pairs of IDs. These pairs could be similar pairs or dissimilar pairs. A
similar pair signifies two IDs that belong to the same class (either real or fake class) and the same country,
while a dissimilar pair signifies two IDs that belong to different classes (one document belongs to the real
class and the other one belongs to the fake class), but also belong to the same country. A sample of similar
and dissimilar pairs of IDs, which are used as input for our proposed models, are shown in Figure 4. Note
that the samples in Figure 4 are sourced from the public dataset MIDV.

Fig. 4: (a, b) Sample of similar and (c, d) dissimilar pairs; red boxes present the forgery locations.

4.3 Experimental Setup

The training and testing of the proposed models are carried out on the dataset of each country separately.
The training process takes place by taking pairs of samples, while the testing process takes one single sample
as the input for verification. As mentioned, we have 4000 real samples in MIDV and 24000 fake samples
in FMIDV (after removing the generated fake samples where the copy-move operation is performed on the
zones of 64 × 64 because these samples are easily detectable by naked eyes). For each country, we have



Identifying Fraudulent Identity Documents by Analyzing Imprinted Guilloche Patterns 19

400 real samples and 2400 fake samples. We have randomly selected 2/3 of these samples and used them as
training data and the remaining 1/3 images are used as testing data. We choose the following size of training
and testing samples from the aforementioned whole dataset of each country to prevent high computational
time during training and testing as well as to strike a balance between the size of actual and fake samples.

For training, we have randomly selected 20 real samples and 20 fake samples from the training data
set of each country. Hence, in the ContFD model, we have 1160 pairs for training which are distributed as
20 × 19 = 380 (real-real) pairs, and 20 × 20 = 400 (real-fake) pairs, 20 × 19 = 380 (fake-fake) pairs.
While, for the AdvFD model, we have 20 × 20 = 400 (real-fake) pairs for training, as for this model, we
have arbitrarily defined the first input as real and the second input as fake (can be taken in reversed order
also). To test the performances of the proposed models, for all of our experiments, we choose different sizes
of testing samples e.g. {30, 60, 90, 120, 150, 180, 210, 240}, which are selected randomly from the testing
dataset. Moreover, all results presented, utilizing various evaluation metrics, are derived from a rigorous
process involving 5 rounds of calculation, ensuring the robustness of the findings.

4.4 Evaluation Metrics

Three metrics are used in this article to evaluate the performance of the proposed models.

4.4.1 Accuracy is a metric for classification models that measures the number of predictions that are
correct as a percentage of the total number of predictions that are made. The accuracy is expressed in eq. 9.

Accuracy =
# of correct predictions

# of total predictions
(9)

4.4.2 F1-score it is one of the most important evaluation metrics to measure a model’s accuracy on a data
set. It sums up the predictive performance of a model by combining the precision and recall of a model into
a single metric by considering its harmonic mean. The F1-score gives a better measure of the incorrectly
classified cases than the accuracy metric. The F1-score is expressed in eq. 10.

F1− score =
TAR

TAR+ 1
2 (FAR+ FRR)

(10)

where the TAR, the FRR, and the FAR metrics are calculated according to the eq. 11, as reported in [34].

TAR =
x1

X1
, FRR =

x2

X1
, FAR =

x3

X2
(11)

where x1 is the number of real IDs that are predicted as real documents, x2 is the number of real IDs that are
predicted as fake documents, x3 is the number of fake IDs that are predicted as real documents, X1 and X2

correspond to the total number of real and fake IDs, respectively.

4.4.3 AUC-ROC The receiver operating characteristics (ROC) curve is another evaluation metric for bi-
nary classification problems. It visualizes the trade-off probabilities between FAR and TAR at various thresh-
olds. The AUC measures the ability of a classifier to distinguish between the classes. Hence, a higher AUC
indicates a better performance of the model which has a high capability of distinguishing (or discriminating)
between the real and fake classes. Indeed, the AUC is used as a summary of the ROC curve.
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The training and testing are carried out on an in-house GPU server (28 CPUs, 128 Go RAM, 4 GPU
Nvidia RTX 2080Ti cards), with the batch size = 8, and the number of epochs = 100. The “Adam” optimizer
is used, where the learning rate (lr) equals 10e − 4 and the weight decay equals 0. The learning rate lr is
scheduled at every 20 epoch by gamma = 0.1.

5 Experimental Results

This section presents the performance tests of the proposed models in two schemes: (i) with no-weights joint
objective functions, and (ii) with weights joint objective functions.

5.1 No-Weights Joint Objective Functions

Here, we report the performance of predicting the correct label (either real or fake) of the test data in terms
of accuracy, F1-score, and AUC of the proposed models.

Figure 5 presents the obtained accuracy of the proposed models on the different sizes of test samples from
10 countries. The AdvFD model achieves interesting results in comparison to the ContFD model, regardless
of different training schemes. The accuracy values of the AdvFD model are greater than 60% for 8 countries
and also exceed 50% for countries like Greece (grc) and Russia (rus) (due to the bad quality of the guilloche
patterns of the IDs of these countries, the accuracy values are little lesser).

From the accuracy results of the ContFD model, we can see that the dual training scheme i.e., ContFD-
dual achieves better accuracy than the end-to-end scheme (ContFD-e2e) and the fine-tuning scheme (ContFD-
FT) for some countries. Indeed, the accuracy exceeds 75% for countries like Albania (alb), Spain (esp), Fin-
land (fin), Latvia (iva), and Serbia (srb) and could not exceed 20% for the countries like Azerbaijan (aze),
Estonia (est), Greece (grc), Russia (rus), Slovakia (svk). In ContFD-e2e and ContFD-FT, the accuracy values
are within 25%-60%.

Figure 6 presents the F1-score results of the proposed models. We can see that these results are coherent
with the aforementioned accuracy results in Figure 5. We can see that the AdvFD model achieves interesting
F1-score results compared to the achieved F1-score results of the ContFD model. The F1-scores of the
AdvFD model exceed 55% for all countries.

Similarly, the F1-scores of the ContFD-dual achieve better F1-scores compared to ContFD-e2e and
ContFD-FT for some countries. Indeed, the F1-scores exceed 75% for countries like alb, esp, fin, iva, srb,
and do not exceed 10% for countries like aze, est, grc, rus, svk. That can be explained due to the bad quality of
the guilloche patterns in these countries. For ContFD-e2e and ContFD-FT, the F1-scores range between 25%
and 60%. From the previously presented results in Figures 5 and 6, we can conclude that the constrained-
adversary-based training model (AdvFD) achieves better performance than the contrastive-based training
model (ContFD) in differentiating between the real and fake classes. Figure 7 summarizes the performances
of the proposed models for distinguishing between the real and fake classes in terms of AUC. Specifically,
the AUC of AdvFD exceeds 55% for five countries i.e., alb, aze, grc, srb, svk, and the AUC of AdvFD
model is not less than 50%. For est, fin, iva, and rus, the AUC for ContFD-dual shows a better performance
compared to other proposed models. Also, the ContFD-e2e model outperforms the other suggested models
in terms of AUC for the results of Spain’s (esp) IDs.

5.2 Weights Joint Objective Functions

Loss functions are used to gauge how well the model’s predictions correspond to ground truth. The technique
to add weights to the loss function is to multiply by a weight factor before summing up the individual losses.
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(a) (b)

(c) (d)

Fig. 5: Accuracy results of (a) ContFD-e2e, (b) ContFD-dual, (c) ContFD-FT, (d) AdvFD.

To this end, firstly, we add weights into the joint partial loss functions before summing all the individual
losses in each of the proposed models (expressed as adding sub-weights into the partial loss functions).
Secondly, we add weights into the computation of total loss, which represents the overall loss of all the
individual losses for each of the proposed approaches (expressed as adding full weights into the total loss
functions). The purpose of adding sub-weights and full-weights can be seen as a way to employ variable
weights to the different individual losses of the network to regulate and improve the overall performance of
the model.

5.2.1 Applying sub-weights and full-weights in the ContFD model Here, we explain in detail how we
have added the sub-weights and full-weights to the partial and total loss functions of the ContFD model,
followed by the performance evaluation.
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(a) (b)

(c) (d)

Fig. 6: F1-score results of (a) ContFD-e2e, (b) ContFD-dual, (c) ContFD-FT, (d) AdvFD.

5.2.1.1 Adding the sub-weights into the partial loss function:

In continuation with the description in Section 3 about the ContFD Model which consists of three partial
loss functions i.e., reconstruction loss (Lx,x̂,y,ŷ

reconstruct), contrastive (encoded) loss (Lzx,zy,ℓx,ℓy
contrastive) and cross-

entropy loss (Lℓ
cross). Here, we give a thorough description of how we included sub-weights in the partial

loss functions of several proposed models, followed by the performance evaluation of these models. As
previously stated, the “ContFD” model has three distinct schemes. We have outlined the technique which
we used to integrate sub-weights into each of these three schemes. To implement the desired weighted loss
function, we incorporated four (w ∈ {wz1

x
, wz2

x
, wz1

y
, wz2

y
}) weights (a pair of weights is computed from
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Fig. 7: AUC results of the proposed models.

each latent vector i.e., zx and zy) into the partial loss functions of “ContFD-e2e” model. Accordingly,
equations 2 and 3 are revised to equations 12 and 13, respectively.

Lx,x̂,y,ŷ
reconstruct = wz1

x
Lx,x̂
reconstruct + (1− wz1

x
)Ly,ŷ

reconstruct (12)

where
Lx,x̂
reconstruct = wz2

x
∥x− x̂∥1 + (1− wz2

x
)SSIM(x, x̂)

Ly,ŷ
reconstruct = wz1

y
∥y − ŷ∥1 + (1− wz1

y
)SSIM(y, ŷ)

Lℓ
cross = wz2

y
Lℓx
cross + (1− wz2

y
)Lℓy

cross (13)

For the second scheme i.e., in the “Dual” learning scheme of “ContFD” model, the weighted loss
function is computed in two steps. In the first step, eq. 2 gets updated by adding two weights i.e., wz1

x
, wz1

y

as in eq. 14.

Lx,x̂,y,ŷ
reconstruct = Lx,x̂

reconstruct + Ly,ŷ
reconstruct (14)

where
Lx,x̂
reconstruct = wz1

x
∥x− x̂∥1 + (1− wz1

x
)SSIM(x, x̂)

Ly,ŷ
reconstruct = wz1

y
∥y − ŷ∥1 + (1− wz1

y
)SSIM(y, ŷ)

In the second step, eq. 3 is modified to eq. 15 by the inclusion of the weight wz2
x
.

Lℓ
cross = wz2

x
Lℓx
cross + (1− wz2

x
)Lℓy

cross (15)

Hence, these three weights i.e., wz1
x
, wz2

x
and wz1

y
are generated (wz1

x
, wz2

x
comes from the latent vector zx

and wz1
y

comes from the latent vector zy) in the same manner as explained before.
For the third scheme i.e., the “Fine-tuning” scheme, we need only one weight i.e., wz1

x
, which is obtained

from the latent vector zx in the same manner as explained before. As a result, eq. 3 is modified to eq. 16.
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Lℓ
cross = wz1

x
Lℓx
cross + (1− wz1

x
)Lℓy

cross (16)

5.2.1.2 Adding full weights into the total loss functions:

The individual weights are added in the following manner to compute the final loss. In the case of the
End-to-end (ContFD-e2e) learning scheme of training, it is required to generate three weight values i.e.,
λ ∈ {λ1, λ2, λ3} for optimizing the total loss. Please note that here we need 3 individual weights instead of

2 because we need to maintain the constraint;
3∑

i=1

λi = 1. Accordingly, eq. 4 is modified to eq. 17.

Le2e = λ1L
zx,zy,ℓx,ℓy
contrastive + λ2Lx,x̂,y,ŷ

reconstruct + λ3Lℓ
cross (17)

For the of Dual (ContFD-dual) learning scheme of training, only one weight (i.e., λ = {λ1}) is required
in phase 1. As a result, eq. 5 is updated to eq. 18.

LP1
= λ1L

zx,zy,lx,ly
contrastive + (1− λ1)Lx,x̂,y,ŷ

reconstruct (18)

Whereas, for phase 2, the training is performed based on eq. 6, where we don’t have any possibility/necessity
to add weights in the final computation of total loss.

In the case of Fine-tuning (ContFD-FT) scheme, the model training in phase1 is performed in the same
manner as it is done in eq. 18, whereas, in phase2, the model training is continued by using eq. 6. Here also,
we don’t have any possibility to add weights in the final computation of the total loss.

5.2.1.3 Computing sub-weights and full-weights for ContFD:

Here, we explain the technique to automatically compute the optimized weights to add them to the partial
and the total loss functions of ContFD models.

❐ Generating sub-weights for the loss function: The technique used for generating the sub-weights in
our models starts by passing the generated corresponding latent vectors (either zx or zy5) from each
image in the input image pair through two Conv-BN-RELU layers, one “Average Pooling”6 layer and
multiple DropOut-FC(i vect, o vect)-RELU layers. Finally, the output is passed through the Sigmoid
() activation function to obtain the weight value between 0 to 1. Where, Conv(inch → outch; k), BN,
RELU, and FC represent, convolutional, batch normalization layers, activation function, and fully con-
nected layers respectively. The i vect and o vect in FC(i vect, o vect) represent the number of input
and output vectors of the fully connected layer respectively. Whereas, inch, outch, and k represent the
number of input, output channels, and kernel size respectively.
The structure of above mentioned first and second Conv-BN-RELU layers are Conv (1664, 512, 7)-
BN-ReLU and Conv (512, 256, 5)-BN-ReLU respectively. There are a total of 5 DropOut-FC(i vect,
o vect)-RELU blocks which are added after. Then one “Average Pooling” (i.e., AdaptiveAvgPool2d(poolsize))
layer is applied to downsample the input along its spatial dimensions (height × width) by taking the av-
erage value over an input window (of size defined by poolsize) for each channel of the input. In this case,
the AdaptiveAvgPool2d(1) layer takes an input of size (256× 3× 3) and transforms it into a vector of
size (256×1×1) which is then flattened to obtain a vector of size 256 only. Then, this 256-dimensional

5 The dimensions of each latent vector are 1664× 7× 7.
6 Here we have used the “Adaptive Average Pooling” algorithm from the PyTorch library. For more details, see:
https://pytorch.org/cppdocs/api/classtorch_1_1nn_1_1_adaptive_avg_pool1d.html .
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vector is passed through the first block of DropOut-FC (256 → 128)-RELU; the second block of
DropOut-FC (128 → 64)-RELU; the third block of DropOut-FC (64 → 32)-RELU; the fourth block
of DropOut-FC (32 → 16)-RELU; and the fifth block of DropOut-FC (16 → 2)-RELU respectively.
Depending on the batch size (b), used for training, finally, we will obtain an output of dimension b× 2,
which is then averaged row-wise to finally obtain a vector of size 2. These 2 values are then passed
through the Sigmoid () activation function to obtain 2 weight values in the range of 0 to 1.
In the same manner, we obtain another 2 weight value from the second image of the input image pair. In
this way, we will be able to compute 4 weights i.e., wz1

x
, wz2

x
, wz1

y
, and wz2

y
.

❐ Generating full weights for the loss function: We follow a similar approach to generate the full
weights. At first, the two latent vectors, obtained from the input image pair are concatenated (i.e.,
zx and zy are concatenated along the first dimension7.) and then passed into two Conv-BN-RELU
layers, one “Average Pooling” layer and multiple DropOut-FC(i vect, o vect)-RELU layers. Finally,
in the same manner, the output is passed through the Sigmoid () activation function to obtain the
weight value between 0 to 1. The structure of the first and second Conv-BN-RELU layers are: Conv
(1664×2, 512, 7)-BN-RELU, Conv (512, 256, 5)-BN-RELU. After that, a 2D adaptive average pooling
AdaptiveAvgPool2d(1) layer is applied over the input of size 256×1×1 to transform it into a vector of
size (256×1×1) which are the flattened to obtain a vector of size 256 only. Then, this 256 dimensional
vector is passed through the five blocks of:
DropOut-FC (256 → 128)-RELU; DropOut-FC (128 → 64)-RELU; DropOut-FC (64 → 32)-
RELU; DropOut-FC (32 → 16)-RELU; DropOut-FC (16 → 3)-RELU respectively. After the above-
mentioned operation, we obtain an output of dimension b×3, which is then averaged row-wise to finally
obtain a vector of size 3. These 3 values are then passed through the Sigmoid () activation function to
obtain 3 weight values in the range of 0 to 1.

5.2.2 Applying the sub-weights and full-weights in the AdvFD Model Here, we explain in detail how
we added the sub-weights and full-weights to the partial loss functions and the total loss functions of the
AdvFD model, followed by the performance evaluation.

5.2.2.1 Adding the sub-weights into the partial loss function:

In continuation with Section 3.2.1, here in this section, we define the technique to compute the weighted loss
function for “AdvFD Model”. The “AdvFD” model integrates two loss functions i.e., the reconstruction loss
(Lx,x̂,y,ŷ

reconstruct), and adversarial loss (Lzy
adv), as depicted in eq. 19.

Lx,x̂,y,ŷ
adversarial = Lzy

adv + Lx,x̂,y,ŷ
reconstruct (19)

In eq. 19, the sub-weights can be exclusively applied to the reconstruction loss (Lx,x̂,y,ŷ
reconstruct). In contrast,

there is no provision for introducing sub-weights into the adversarial loss (Lzy
adv), given its singular term

A(zy), as presented in eq. 20.

Lzy
adv = log (1−A(zy)) (20)

The formulation of reconstruction loss remains the same as in eq. 12. Hence, three weights (i.e., wz1
x
, wz2

x
, wz1

y
)

are generated from each input zx and zy respectively. Finally, based on this sub-weights-based loss function,
the weighted adversarial loss (Lx,x̂,y,ŷ

adversarial) is computed.

7 The concatenated vector is of dimension 3328× 7× 7
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5.2.2.2 Adding the full-weights into the total loss functions of AdvFD Model:

This model of training requires two full weights λ ∈ {λ1, λ2} and two sub-weights i.e., wz1
x

and wz2
x

are
required for computing the total loss. Accordingly, the aforementioned eq. 19 is revised to eq. 21.

Lx,x̂,y,ŷ
adversarial = Lzy

adv + Lx,x̂,y,ŷ
reconstruct (21)

where
Lx,x̂,y,ŷ
reconstruct = λ1Lx,x̂

x,reconstruct + λ2Ly,ŷ
y,reconstruct

Lx,x̂
x,reconstruct = wz1

x
∥x− x̂∥1 + (1− wz1

x
)SSIM(x, x̂)

Ly,ŷ
y,reconstruct = wz1

y
∥y − ŷ∥1 + (1− wz1

y
)SSIM(y, ŷ)

hence
Lx,x̂,y,ŷ
adversarial = (1− (λ1 + λ2))L

zy
adv + λ1Lx,x̂

x,reconstruct + λ2Ly,ŷ
y,reconstruct

Here also the required number of sub-weights and full weights are computed by using the same techniques
which are mentioned in Section 5.2.1.3.

5.2.3 The testing performance of adding sub-weights and full-weights in ContFD model: The perfor-
mance of predicting the correct label (either real or fake) of the test data in terms of accuracy and F1-score
after adding sub-weights into the partial loss functions and full-weights into the total loss functions in the
ContFD model are shown in Figures 8 and 9. It can be seen from these results (see Figure 8) that there is
no noticeable improvement can be observed between adding the sub-weights in partial loss functions and
adding the full-weights in the total loss function. However, it can be seen that the accuracy is slightly bet-
ter after adding full-weights over adding sub-weights for some countries like Finland (fin), Estonia (est),
Albania (alb), Greece (grc), Slovakia (svk).

Likewise, it can also be seen from the results of F1-score in Figure 9 that it is consistent and coherent
with the accuracy results (shown in Figure 8). The F1-score results also show that there is no noticeable
improvement in terms of the F1-score between adding the sub-weights into the partial loss function and
adding full weights into the total loss functions. However, the F1-score results of adding full-weights over
sub-weights in the ContFD-dual model show slight improvement for some countries like Finland (fin), Spain
(esp), Estonia (est), and Slovakia (svk).

5.2.4 The testing performance of adding the sub-weights and full-weights in the AdvFD model: The
performance of predicting the correct label (either real or fake) of the test data in terms of accuracy and
F1-score after adding sub-weights into the partial loss functions and full-weights into the total loss functions
in the AdvFD model are shown in Figures 10 and 11.

The accuracy results in Figure 10 show that adding the sub-weights into the partial loss functions of
the “AdvFD” model (i.e., “AdvFD-SW” model) outperforms the accuracy of adding the full-weights (i.e.,
“AdvFD-FW” model) into the total loss functions. The accuracy results of “AdvFD-SW” in Figure 10(a)
range between 0.60 − 0.90, while the accuracy results of “AdvFD-FW” in Figure 10(b) don’t exceed 0.78.
A better regularization is the potential reason, which explains that adding sub-weights into the partial loss
functions of the “AdvFD” model offers better accuracy than adding full weights into the total loss functions.
Indeed, by adding sub-weights into the partial loss functions, we apply better-targeted regularization to
specific parts of the model. Additionally, the F1-score results in Figure 11 are coherent and consistent with
the accuracy results in Figure 10. However, the F1-score results of “AdvFD-SW” in Figure 11(a) range
between 0.65-0.93, and the “AdvFD-FW” in Figure 11(b) do not exceed 0.85.
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(a) (b) (c)

(d) (e) (f)

Fig. 8: Accuracy results of (a) ContFD-e2e sub-weights (SW), (b) ContFD-dual-SW), (c) ContFD-FT-SW
(d) ContFD-e2e full weights (FW), (e) ContFD-dual-FW, (f) ContFD-FT-FW.

5.3 Comprehensive Study of the Performances of all the Models

In this section, we present a comprehensive study of the performances of all the proposed models. Tables 8,
9, and 10, present the accuracy values and F1 scores of all the proposed models by using 30, 150, and 240
testing samples respectively. Furthermore, Figure 12 presents the AUC results of the proposed models. In
Tables 8, 9, 10, the accuracy and F1-score results are presented in (“accuracy | F1-scores”) format, and the
bold font represents the best accuracy and best F1-score among the proposed models.

Table 8: Inclusive (accuracy|F1-score) results for the proposed models on 30 samples.
Country Alb Aze Esp Est Fin Grc Iva Rus Srb Svk

ContFD-e2e 0.42 | 0.62 0.33 | 0.31 0.26 | 0.29 0.30 | 0.33 0.59 | 0.31 0.37 | 0.29 0.41 | 0.38 0.31 | 0.40 0.43 | 0.40 0.39 | 0.33
ContFD-e2e-SW 0.42 | 0.56 0.32 | 0.51 0.33 | 0.42 0.30 | 0.34 0.56 | 0.53 0.48 | 0.66 0.47 | 0.33 0.29 | 0.58 0.39 | 0.33 0.41 | 0.59
ContFD-e2e-FW 0.51 | 0.68 0.30 | 0.56 0.31 | 0.51 0.44 | 0.56 0.50 | 0.48 0.49 | 0.61 0.53 | 0.50 0.28 | 0.57 0.37 | 0.47 0.49 | 0.51
ContFD-dual 0.87 | 0.93 0.09 | 1.00 0.74 | 0.93 0.08 | 0.05 0.83 | 1.00 0.11 | 0.05 0.77 | 0.76 0.08 | 0.07 0.87 | 0.98 0.10 | 0.05
ContFD-dual-SW 0.36 | 0.36 0.08 | 0.07 0.44 | 0.29 0.08 | 0.07 0.11 | 0.07 0.10 | 0.00 0.80 | 1.00 0.10 | 0.07 0.83 | 1.00 0.10 | 0.00
ContFD-dual-FW 0.81 | 1.00 0.09 | 0.07 0.82 | 0.93 0.87 | 1.00 0.87 | 1.00 0.44 | 0.00 0.07 | 0.00 0.07 | 0.07 0.26 | 0.14 0.84 | 1.00
ContFD-FT 0.50 | 0.36 0.34 | 0.31 0.37 | 0.43 0.36 | 0.33 0.47 | 0.57 0.51 | 0.45 0.46 | 0.50 0.43 | 0.40 0.34 | 0.36 0.38 | 0.55
ContFD-FT-SW 0.44 | 0.57 0.24 | 0.33 0.31 | 0.38 0.37 | 0.38 0.44 | 0.55 0.51 | 0.55 0.64 | 0.74 0.30 | 0.26 0.43 | 0.45 0.47 | 0.45
ContFD-FT-FW 0.34 | 0.33 0.28 | 0.29 0.32 | 0.26 0.41 | 0.36 0.52 | 0.64 0.41 | 0.52 0.49 | 0.40 0.27 | 0.24 0.37 | 0.43 0.46 | 0.55
AdvFD 0.79 | 0.96 0.71 | 0.56 0.73 | 0.67 0.73 | 0.73 0.73 | 0.78 0.51 | 0.56 0.81 | 0.84 0.53 | 0.60 0.66 | 0.71 0.76 | 0.71
AdvFD-SW 0.70 | 0.93 0.58 | 0.69 0.80 | 0.87 0.84 | 0.91 0.73 | 0.82 0.67 | 0.69 0.87 | 0.91 0.71 | 0.87 0.66 | 0.73 0.62 | 0.76
AdvFD-FW 0.60 | 0.67 0.58 | 0.71 0.69 | 0.76 0.56 | 0.69 0.60 | 0.62 0.71 | 0.71 0.73 | 0.84 0.59 | 0.56 0.73 | 0.84 0.66 | 0.80
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(a) (b) (c)

(d) (e) (f)

Fig. 9: F1-score results of (a) ContFD-e2e-SW, (b) ContFD-dual-SW, (c) ContFD-FT-SW, (d) ContFD-e2e-
FW, (e) ContFD-dual-FW, (f) ContFD-FT-FW.

(a) (b)

Fig. 10: Accuracy results of (a) AdvFD-SW, (b) AdvFD-FW.

According to the aforementioned results in Tables 8, 9, and 10, the ”ContFD-dual” and ”AdvFD” models
achieved the best testing performance for almost all of the countries. More specifically, the ”ContFD-dual”
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(a) (b)

Fig. 11: F1-score results of (a) AdvFD-SW, (b) AdvFD-FW.

Table 9: Inclusive (accuracy|F1-score) results for the proposed models on 150 samples.
Country Alb Aze Esp Est Fin Grc Iva Rus Srb Svk

ContFD-e2e 0.50 | 0.48 0.25 | 0.30 0.30 | 0.25 0.28 | 0.31 0.52 | 0.32 0.38 | 0.38 0.48 | 0.42 0.34 | 0.30 0.44 | 0.35 0.40 | 0.41
ContFD-e2e-SW 0.49 | 0.43 0.36 | 0.52 0.38 | 0.56 0.36 | 0.59 0.56 | 0.52 0.42 | 0.67 0.57 | 0.46 0.28 | 0.56 0.31 | 0.52 0.51 | 0.53
ContFD-e2e-FW 0.54 | 0.37 0.27 | 0.57 0.36 | 0.51 0.35 | 0.61 0.54 | 0.47 0.45 | 0.63 0.57 | 0.35 0.29 | 0.54 0.46 | 0.45 0.57 | 0.39
ContFD-dual 0.90 | 0.98 0.10 | 0.98 0.84 | 0.92 0.07 | 0.02 0.88 | 0.98 0.20 | 0.07 0.76 | 0.80 0.08 | 0.02 0.90 | 0.98 0.08 | 0.02
ContFD-dual-SW 0.36 | 0.30 0.10 | 0.02 0.40 | 0.41 0.09 | 0.03 0.10 | 0.05 0.08 | 0.00 0.91 | 0.98 0.12 | 0.04 0.89 | 0.98 0.10 | 0.03
ContFD-dual-FW 0.87 | 0.96 0.08 | 0.05 0.88 | 0.94 0.89 | 1.00 0.91 | 0.96 0.46 | 0.01 0.09 | 0.02 0.07 | 0.04 0.30 | 0.36 0.91 | 0.98
ContFD-FT 0.46 | 0.49 0.28 | 0.24 0.38 | 0.40 0.36 | 0.47 0.46 | 0.47 0.47 | 0.44 0.52 | 0.52 0.37 | 0.39 0.34 | 0.29 0.41 | 0.40
ContFD-FT-SW 0.46 | 0.48 0.27 | 0.24 0.36 | 0.31 0.35 | 0.34 0.47 | 0.48 0.38 | 0.39 0.62 | 0.65 0.32 | 0.30 0.44 | 0.40 0.52 | 0.50
ContFD-FT-FW 0.43 | 0.41 0.26 | 0.26 0.31 | 0.31 0.40 | 0.42 0.54 | 0.58 0.41 | 0.39 0.46 | 0.45 0.27 | 0.28 0.37 | 0.40 0.42 | 0.43
AdvFD 0.86 | 0.82 0.68 | 0.64 0.72 | 0.72 0.83 | 0.77 0.75 | 0.71 0.54 | 0.53 0.82 | 0.80 0.56 | 0.58 0.68 | 0.66 0.74 | 0.69
AdvFD-SW 0.80 | 0.89 0.62 | 0.67 0.83 | 0.92 0.83 | 0.89 0.77 | 0.79 0.68 | 0.75 0.82 | 0.92 0.74 | 0.82 0.68 | 0.73 0.70 | 0.76
AdvFD-FW 0.60 | 0.69 0.65 | 0.72 0.66 | 0.68 0.63 | 0.66 0.71 | 0.71 0.69 | 0.72 0.71 | 0.76 0.64 | 0.67 0.75 | 0.80 0.72 | 0.79

Table 10: Inclusive (accuracy|F1-score) results for the proposed models on 240 samples.
Country Alb Aze Esp Est Fin Grc Iva Rus Srb Svk

ContFD-e2e 0.48 | 0.48 0.29 | 0.29 0.32 | 0.26 0.30 | 0.29 0.57 | 0.32 0.40 | 0.38 0.50 | 0.42 0.34 | 0.32 0.47 | 0.32 0.43 | 0.43
ContFD-e2e-SW 0.49 | 0.43 0.32 | 0.52 0.34 | 0.49 0.36 | 0.61 0.55 | 0.39 0.42 | 0.65 0.57 | 0.37 0.29 | 0.56 0.30 | 0.47 0.50 | 0.53
ContFD-e2e-FW 0.57 | 0.50 0.29 | 0.57 0.34 | 0.50 0.40 | 0.61 0.47 | 0.52 0.48 | 0.63 0.53 | 0.40 0.27 | 0.54 0.43 | 0.42 0.54 | 0.47
ContFD-dual 0.88 | 0.98 0.11 | 0.98 0.85 | 0.92 0.12 | 0.02 0.91 | 0.98 0.16 | 0.07 0.77 | 0.81 0.08 | 0.03 0.91 | 0.98 0.09 | 0.02
ContFD-dual-SW 0.36 | 0.30 0.09 | 0.02 0.38 | 0.41 0.09 | 0.03 0.10 | 0.03 0.09 | 0.02 0.90 | 0.98 0.11 | 0.04 0.91 | 0.98 0.09 | 0.03
ContFD-dual-FW 0.88 | 0.95 0.09 | 0.04 0.90 | 0.94 0.90 | 0.98 0.92 | 0.97 0.46 | 0.02 0.10 | 0.02 0.09 | 0.02 0.35 | 0.32 0.87 | 0.98
ContFD-FT 0.47 | 0.48 0.28 | 0.24 0.42 | 0.42 0.33 | 0.44 0.47 | 0.47 0.40 | 0.44 0.51 | 0.52 0.44 | 0.40 0.33 | 0.31 0.39 | 0.39
ContFD-FT-SW 0.47 | 0.47 0.26 | 0.24 0.36 | 0.32 0.34 | 0.33 0.47 | 0.46 0.40 | 0.40 0.59 | 0.63 0.27 | 0.28 0.41 | 0.41 0.47 | 0.50
ContFD-FT-FW 0.44 | 0.41 0.27 | 0.26 0.32 | 0.29 0.40 | 0.43 0.49 | 0.55 0.40 | 0.38 0.47 | 0.43 0.29 | 0.26 0.37 | 0.40 0.39 | 0.43
AdvFD 0.88 | 0.81 0.65 | 0.63 0.73 | 0.69 0.81 | 0.76 0.75 | 0.71 0.51 | 0.53 0.89 | 0.80 0.61 | 0.57 0.74 | 0.66 0.76 | 0.72
AdvFD-SW 0.80 | 0.89 0.65 | 0.66 0.86 | 0.91 0.82 | 0.88 0.71 | 0.81 0.66 | 0.75 0.86 | 0.93 0.77 | 0.81 0.68 | 0.72 0.68 | 0.74
AdvFD-FW 0.60 | 0.67 0.66 | 0.72 0.70 | 0.71 0.60 | 0.65 0.66 | 0.73 0.67 | 0.71 0.68 | 0.78 0.66 | 0.68 0.71 | 0.80 0.73 | 0.76

model achieved high testing performance for countries like Alb and Srb, while the ”ContFD-dual-FW”
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model achieved higher testing performance for countries like Esp, Est, Fin, and Svk. The ”AdvFD-SW”
model achieved a higher testing performance for Rus, while the two configurations of the AdvFD model
(i.e., by adding sub-weights and full-weights) achieved better performance for Greece. In terms of F1 scores,
the ”ContFD-dual” model achieved better results, while the AdvFD model achieved better accuracy for some
countries. The ”ContFD-e2e” and ”ContFD-FT” models were not able to outperform the ”ContFD-dual” and
”AdvFD” models, which showed the best testing performance for almost all of the countries.

Here are some specific observations from the results:

– ContFD-dual achieved the highest accuracy (0.87-0.91) for all sample sizes in Alb, Srb, and several
other countries. It also achieved the highest F1 score (0.93-1.00) in Alb and Srb for all sample sizes.

– AdvFD achieved the highest accuracy (0.79-0.89) for Grc in all sample sizes. It also achieved the highest
F1 score (0.82-0.96) for Aze with 30 samples.

– ContFD-dual-FW achieved the highest accuracy (0.87-0.92) for Est, Fin, and Svk with 150 and 240
samples. It also achieved the highest F1 score (1.00) for Fin with 150 samples.

– AdvFD-SW achieved the highest accuracy (0.74-0.77) for Rus with 150 and 240 samples. It also
achieved the highest F1 score (0.87) for Rus with 30 samples.

It is important to note that the best-performing model can vary depending on the specific country
and evaluation metric (accuracy vs. F1 score). However, both ”ContFD-dual” and ”AdvFD” consistently
achieved strong performance across a variety of testing conditions, making them promising candidates for
real-world applications.

(a) (b) (c)

Fig. 12: AUC results of the proposed models (a) without adding weights, (b) after adding sub-weights, (c)
after adding full weights.

Furthermore, in Figure 12, the AUC results of the various countries via different configurations of the
proposed models (with/without adding weights into the loss functions) are shown. It can be seen from the
results that the AUC values range between 0.55 − 0.65. More importantly, it can be seen from the AUC
results that the testing performance of both the “ContFD-dual” and “AdvFD” models are superior to the
“ContFD-e2e” and “ContFD-FT” models for most of the countries. The analysis of results from AUC curves
is fully coherent with the results mentioned in Tables 8, 9, 10.
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6 Comparative Study and Discussion

This section presents a comprehensive comparison and discussion of the performance of the proposed mod-
els in this paper, with other relevant studies in the literature. Due to the limited overlap in the characteristics
and methodologies of the proposed models and the other works, particularly those listed in Tables 2 and 3,
this comparison will be conducted across multiple disciplines.

6.1 Performance Comparison

To further evaluate the effectiveness of the proposed ContFD and AdvFD models, we undertake a com-
parative analysis against the CFD and FsAFD models introduced in [1]. This comparison is particularly
relevant as [1] is the only existing work that aligns with our models in terms of the security objects to be
verified (i.e., guilloche) and utilizes similar datasets (i.e., MIDV and FMIDV) for performance evaluation.

Table 11 provides a detailed comparison between our research in this paper and the previous study
conducted by [1] using sample sizes of 30, 150, and 240, focusing on the metrics of accuracy and F1-score.
This comparative analysis assesses the performance of our best model/s using datasets comprising 30, 150,
and 240 samples, as outlined in the comprehensive results showcased in Tables 8, 9, and 10.

Referring to the results in Table 11, a notable disparity emerges in the performance of our proposed
models in this paper compared to the models presented in the previous work [1], particularly in terms of
accuracy and F1-score. This performance gap remains consistent across all sample sizes, i.e, 30, 150, and
240. Remarkably, the performance tests reveal a substantial discrepancy, with accuracy differing by more
than 40% and F1-score by over 30% for all countries.

Upon examining the data in Table 11, we draw several noteworthy conclusions regarding the performance
of various learning schemes. The ContFD model, utilizing a dual learning approach, known as ContFD-dual,
emerges as the top-performing (Excellent) model for all countries except Grc and Rus. In the cases of Greece
(Grc) and Russia (Rus), the AdvFD model, enhanced with sub-weights (AdvFD-SW) within its objective
function, stands out as the optimal choice.

Furthermore, the results presented in Table 11 affirm the advantages of incorporating weights into the
objective functions of the ContFD-dual model. This enhancement significantly improves the overall perfor-
mance across all eight countries. Specifically, when full weights are integrated into the objective function
of the ContFD-dual model (ContFD-dual-FW), it becomes the best-performing (excellent) model for the
countries Esp, Est, Fin, and Svk. Conversely, introducing sub-weights into the ContFD model-based dual
learning scheme (ContFD-dual-SW) yields the best results for the Iva country.

In Figure 13, we present a comparative analysis showcasing the AUC results of our top-performing
models in comparison to the models introduced in [1].

The results displayed in Fig. 13 reveal a significant disparity in AUC performance between our top-
performing models and the models introduced in [1] across most countries. Our proposed models in this
paper surpass the AUC results achieved by the models in [1] (CFD and FsAFD) for all countries except Est
and Rus. However, it is worth noting that the performance gap in terms of AUC is substantial, exceeding
10% for all countries except Est and Rus. In contrast, for Est and Rus, the AUC performance of all models
shows remarkable convergence, with the margin in performance not exceeding 1%.

While AUC provides a valuable performance metric, it’s not the sole factor when choosing a model for
a specific task. It is essential to assess other metrics like accuracy, and F1-score and consider the specific
requirements of the targeted application.
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Table 11: Comparison of accuracy and F1-scores.
Country 30 samples 150 samples 240 samples

Models accuracy|F1 accuracy|F1 accuracy|F1

Alb

ContFD-dual 0.87 | 0.93 0.90 | 0.98 0.88 | 0.98
CFD in [1] 0.46 | 0.63 0.58 | 0.68 0.56 | 0.64
FsAFD in [1] 0.51 | 0.65 0.57 | 0.70 0.57 | 0.70

Aze

ContFD-dual 0.09 | 1.00 0.10 | 0.98 0.11 | 0.98
AdvFD 0.71 | 0.56 0.68 | 0.64 0.65 | 0.63
CFD in [1] 0.59 | 0.72 0.56 | 0.64 0.58 | 0.57
FsAFD in [1] 0.54 | 0.71 0.56 | 0.71 0.55 | 0.71

Esp
ContFD-dual-FW 0.82 | 0.93 0.88 | 0.94 0.90 | 0.94
CFD in [1] 0.50 | 0.59 0.44 | 0.59 0.46 | 0.57
FsAFD in [1] 0.56 | 0.71 0.57 | 0.73 0.56 | 0.72

Est
ContFD-dual-FW 0.87 | 1.00 0.89 | 1.0 0.90 | 0.98
CFD in [1] 0.48 | 0.70 0.57 | 0.66 0.58 | 0.65
FsAFD in [1] 0.62 | 0.77 0.57 | 0.73 0.57 | 0.73

Fin
ContFD-dual-FW 0.87 | 1.00 0.91 | 0.96 0.92 | 0.97
CFD in [1] 0.47 | 0.42 0.48 | 0.58 0.51 | 0.56
FsAFD in [1] 0.61 | 0.72 0.56 | 0.69 0.56 | 0.69

Grc
AdvFD-SW 0.67 | 0.69 0.68 | 0.75 0.66 | 0.75
CFD in [1] 0.54 | 0.62 0.57 | 0.62 0.55 | 0.66
FsAFD in [1] 0.56 | 0.71 0.55 | 0.69 0.55 | 0.69

Iva
ContFD-dual-SW 0.80 | 1.00 0.91 | 0.98 0.90 | 0.98
CFD in [1] 0.34 | 0.50 0.42 | 0.54 0.41 | 0.65
FsAFD in [1] 0.60 | 0.75 0.58 | 0.73 0.57 | 0.73

Rus
AdvFD-SW 0.71 | 0.87 0.74 | 0.82 0.77 | 0.81
CFD in [1] 0.46 | 0.52 0.47 | 0.49 0.46 | 0.48
FsAFD in [1] 0.61 | 0.73 0.57 | 0.70 0.56 | 0.70

Srb
ContFD-dual 0.87 | 0.98 0.90 | 0.98 0.91 | 0.98
CFD in [1] 0.52 | 0.53 0.56 | 0.62 0.57 | 0.60
FsAFD in [1] 0.51 | 0.68 0.57 | 0.72 0.58 | 0.73

Svk
ContFD-dual-FW 0.84 | 1.00 0.91 | 0.98 0.87 | 0.98
CFD in [1] 0.43 | 0.63 0.54 | 0.59 0.53 | 0.57
FsAFD in [1] 0.52 | 0.69 0.57 | 0.72 0.57 | 0.72

Fig. 13: Comparative analysis of AUC results.
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6.2 Systematic Comparisons

Our research represents the pioneering effort in developing a forgery detection model tailored to IDs, specif-
ically focusing on guilloche patterns. Notably, there is a notable absence of prior experiments or reported
results concerning the MIDV and the FMIDV datasets within the existing literature, rendering a comparative
study impractical. Consequently, our study serves as foundational groundwork for future endeavors in this
domain. Nevertheless, the novelty of our approach can be underscored by conducting a systematic compar-
ison between our work and pertinent studies referenced in [1], [5–7], [12–18], which are deemed highly
relevant to our proposal. Key facets for comparison include the generality of the learning scheme, the neces-
sity of the original document as a reference for forgery detection, the simplicity predicated on the number
of utilized CNNs, the establishment of a new dataset, and the complexity. Table 12 provides a comparative
analysis of state-of-the-art forgery detection methods for documents and IDs and the proposed models. To
assess the efficacy of the forgery detection system, we will employ a standardized evaluation criterion to
gauge its performance, typically measured in terms of accuracy or other relevant metrics. Accordingly, if the
model achieves a performance level between 70% and below 80%, it will be categorized as a ”fair” model.
If the performance falls within the range of 80% to below 90%, the model will be deemed ”good”. Finally,
if the performance exceeds or equals 90%, the model will be classified as ”very good”.

Table 12: Comparative analysis of SOTA methods of forgery detection for IDs w.r.t the proposed models.
Characteristics SOTA Techniques

[1] [12] [13] [14] [15] [5] [16] [17] [18] [6] [7] Proposed
Method

Threshold setting No Yes Yes Yes No No No No No Yes Yes No
Dependency on
knowing pattern

nature

No Yes Yes Yes Yes Yes No Yes Yes Yes Yes No

Dependency on
pre-processing

No Yes Yes Yes Yes Yes No No No Yes Yes No

Dependency on
visual

characteristics

No Yes Yes Yes No Yes No Yes Yes Yes Yes No

Sensitivity to
image quality

No Yes Yes Yes Yes Yes No Yes Yes Yes Yes No

Requirement of
the original

pattern/document
(as a reference)

No Yes Yes Yes No Yes Yes Yes Yes Yes Yes No

End-to-end
solution

Yes No No No Yes No No No No No No Yes

Forgery detection
performance Low

(fair model)
Average

(good model)

High
(better
model)

High
(better
model)

Average
(good

model)

Average
(good

model)

Average
(good
model)

Average
(good
model)

Low (fair
model)

High
(better
model)

Average
(good

model)

High
(better
model)

Generality for
different types of

ID

Yes No No No No No No No No No No Yes

Simplicity Yes (used 1
CNN)

Yes Yes Yes Yes Yes (used 1
CNN)

Yes (used 3
CNN)

Visual
inspection

Visual
inspection

Yes Yes Yes (used 1
CNN)

Creation of new
dataset

Yes No No No No No Yes No No No No No

Types of processed
documents

Global IDs Limited on
Russian
passport

Limited
(Italian,
French

IDs)

Limited to
Colombian

IDs

Limited to
Azerbaijani

IDs of
MIDV

Limited to
French IDs

Limited to
Spain IDs

and
banknotes

Global IDs Global IDs Limited to
MIDV500

Limited
French

passport

Global IDs
(MIDV and

FMIDV)

Complexity Average Low Low High High Average High High High Average Average Average
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Table 12 provides a comprehensive comparative analysis of state-of-the-art forgery detection methods
for documents and IDs, alongside our proposed models. Our models offer end-to-end solutions without
requiring the original pattern or document as a reference, ensuring a high level of generality across different
types of IDs. Unlike several existing methods, our approach does not depend on pre-processing or visual
characteristics, making it robust to variations in image quality. Moreover, our models employ a single CNN
for simplicity and have demonstrated high forgery detection performance, outperforming many existing
methods. Additionally, our work contributes to the field by introducing new datasets and addressing the
complexity associated with forgery detection in IDs.

6.3 The Pros and Cons of the Proposed Models

According to the mentioned elements in Table 13, the proposed models offer several advantages.
ContFD provides robust feature representation through an encoder-decoder structure, facilitating con-

trastive learning for discrimination and ensuring high-quality reconstruction. Additionally, its multi-objective
training enhances the model’s comprehensiveness. AdvFD, on the other hand, leverages a constrained adver-
sarial network to enhance the quality of latent spaces, leading to improved discriminatory features. However,
both models suffer from complexity due to their intricate architectures, which can pose challenges during
training and deployment. Moreover, the interpretability of AdvFD may be compromised due to the adver-
sarial nature of its training, making it difficult to interpret the decision-making process.

6.4 Complexity Analysis

In the following section, we have categorically analyzed the complexities of the proposed ContFD and Ad-
vFD models and the previously introduced CFD and FsAFD models, outlined in [1]. The following complex-
ity analysis reveals several key insights into the computational demands of the proposed ContFD and AdvFD
models compared to the previously introduced CFD and FsAFD models. Both ContFD and AdvFD models
exhibit higher computational complexity primarily due to their intricate architectures involving encoder-
decoder networks and adversary networks. Specifically, the ContFD model employs a dense neural network
architecture for feature extraction and reconstruction, contributing to a significant increase in computational
requirements, as evidenced by the substantially higher number of FLOPS and parameters compared to the
CFD and FsAFD models. Similarly, the AdvFD model introduces additional computational overhead with
its inclusion of an adversary network for adversarial training, further amplifying the complexity. While these
models offer enhanced discriminatory features and improved representations, their computational demands
pose challenges in terms of training and deployment. Method Name : CFD model [1]

I. Complexity Analysis : The complexity analysis of the CFD model involves considering the compu-
tational cost associated with training and making predictions. We break down the complexity analysis
into different components:

i. Encoder Network Eθ(.) (i.e. Siamese Neural Network) :
❐ Forward Pass: It involves computing the latent feature vectors zx = Eθ(x) and zy = Eθ(y)

for a pair of IDs (x,y). The encoder network consists of fully connected layers with d dimen-
sions, the complexity is typically O(d).

❐ Contrastive Loss: It involves computing the distance between Eθ(x) and Eθ(y) based on the
specified conditions. This distance calculation has a complexity of O(d).

❐ Backward Pass (Gradient Descent): The back-propagation involves computing of gradients,
concerning the parameters of the encoder network. The complexity is O(d) per parameter.
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Table 13: The pros and cons of the proposed models.
Method Pros Cons

ContFD

❐ Robust feature representation: It employs an encoder-
decoder structure to map input images into lower-
dimensional feature vectors and helps in extracting robust
and meaningful representations of IDs.

❐ Contrastive learning for discrimination: It facilitates dis-
crimination between genuine and fake IDs.

❐ Reconstruction quality: The inclusion of point-wise L1
loss and SSIM loss in the reconstruction objective
ensures that the decoder generates high-quality recon-
structed images.

❐ Multi-Objective training: helps address various aspects of
the forgery detection task, making the model more com-
prehensive.

❐ Enforcement of similarity constraints: The contrastive loss
enforces constraints on the distribution of the model’s in-
ner representation, encouraging similar features for sam-
ples from the same class and dissimilar features for sam-
ples from different classes. This enhances the discrimina-
tive power of the model.

❐ Complexity: The model’s architecture, involv-
ing an encoder-decoder and a classifier net-
work, introduces complexity in terms of train-
ing, and deployment.

AdvFD

❐ A constrained adversarial network (A(.)) enhances the
quality of latent spaces by maximizing the distance be-
tween the latent spaces for real and fake IDs. This can
contribute to improved discriminatory features.

❐ Employing the constrained adversarial network implicitly
improves the quality of latent spaces by focusing on the la-
tent space (zy) generated from fake images. This, in turn,
minimizes the difference between the input and the recon-
structed image, leading to better representations.

❐ Adversarial loss (Lzy
adv) for discrimination: helps in the

discrimination process by penalizing the network for mis-
classifying a fake instance as real and rewarding correct
classification. This promotes the ability of the discrimina-
tor to detect features indicative of forgery.

❐ Complexity: Like the ContFD model, the Ad-
vFD model involves a complex architecture,
which may introduce challenges in terms of
training, and interpretability.

❐ Interpretability: Understanding the decision-
making process of an adversarial model can
be challenging. The adversarial nature of the
training might make it harder to interpret the
features contributing to the model’s decisions.

ii. Classifier Network f(.) :
❐ Forward Pass: It includes computing the classification probabilities based on the latent feature

vectors. The classifier consists of fully connected layers with d dimensions, the complexity is
typically O(d).

❐ Cross-Entropy Loss (i.e., Lℓ
cross): It involves computing the difference between predicted

probabilities and true labels. The complexity is O(1) for each sample, making it O(N) for
N samples.

❐ Backward Pass: It involves computing gradients concerning its parameters. The complexity is
usually O(d) per parameter.
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iii. Training Iterations :
❐ The overall training complexity is influenced by the number of training iterations. Each itera-

tion involves a forward and backward pass for both the encoder and the classifier.
II. Speed and Number of Parameters:

❐ GFLOPS: 0.10253851
❐ Number of parameters (million): 46.091677

Method Name : FsAFD model [1]

I. Complexity Analysis : The complexity analysis of the FsAFD model involves considering the compu-
tational cost associated with training and making predictions. We break down the complexity analysis
into different components:

i. Encoder Network Eθ(.) (i.e. Siamese Neural Network)
❐ Forward Pass: Similar to the encoder in CFD model, the complexity is typically O(d).
❐ Contrastive Loss: Similar to the CFD model, the complexity of this operation is O(d).
❐ Backward Pass: The complexity is O(d) per parameter.

ii. Adversary Network (Fake-sample Adversary):
❐ Forward Pass: It involves computing the predicted probabilities based on the encoded rep-

resentation Eθ(y). The adversary consists of fully connected layers with d dimensions, the
complexity is typically O(d).

❐ Adversary Loss: It involves computing the loss based on the predicted probabilities and the
contrary target labels. The complexity is O(N) for N samples.

❐ Backward Pass: It involves computing gradients concerning its parameters. The complexity is
usually O(d) per parameter.

iii. Training Iterations :
❐ The overall training complexity is influenced by the number of training iterations. Each itera-

tion involves a forward and backward pass for both the encoder and the adversary.
II. Speed and Number of Parameters:

– GFLOPS: 0.102541264
– Number of parameters (million): 46.094458

Method Name : Proposed ContFD model

I. Complexity Analysis : The complexity analysis of the ContFD model involves considering the compu-
tational cost associated with training and making predictions. We break down the complexity analysis
into different components:

i. Encoder Network (i.e. DenseNet Neural Network)
❐ Forward Pass: It involves computing the latent feature vectors zx = Eθ(x) and zy = Eθ(y)

for a pair of real and fake IDs. If the encoder network consists of fully connected layers with
d dimensions, the complexity is typically O(d).

❐ Contrastive loss (i.e., Lzx,zy,ℓx,ℓy
contrastive): It involves computing the loss based on the specified

conditions to discriminate between zx and zy . The complexity is O(d).
❐ Backward Pass: The complexity is usually O(d) per parameter.

ii. Decoder Network
❐ Forward Pass: It involves reconstructing the input image pair from the latent spaces zx and

zy . The complexity is O(d).



Identifying Fraudulent Identity Documents by Analyzing Imprinted Guilloche Patterns 37

❐ Reconstruction loss (i.e., Lx,x̂,y,ŷ
reconstruct): It involves computing the point-wise L1 loss and

SSIM loss for image reconstruction. The complexity is O(d).
❐ Backward Pass: The back-propagation for the decoder involves computing gradients concern-

ing its parameters. The complexity is usually O(d) per parameter.
iii. Classifier Network:

❐ Forward Pass: It involves classifying the latent feature vectors zx and zy into the class of ”real”
or ”fake”. If the classifier consists of fully connected layers with d dimensions, the complexity
is typically O(d).

❐ Cross-Entropy Loss (i.e., Lℓ
cross): It involves computing the difference between predicted

probabilities and true labels. The complexity is O(1).
iv. Training Iterations :

❐ The overall training complexity is influenced by the number of training iterations. Each itera-
tion involves a forward and backward pass for both the encoder, decoder, and classifier.

II. Speed and Number of Parameters:
❐ GFLOPS: 23.109468608
❐ Number of parameters (million): 126.286971

Method Name : Proposed AdvFD model

I. Complexity Analysis : The complexity analysis of the AdvFD model involves considering the compu-
tational cost associated with training and making predictions. We break down the complexity analysis
into different components:

i. Encoder Network (i.e. DenseNet Neural Network) :
❐ Forward Pass: It involves computing the latent feature vectors zx = Eθ(x) and zy = Eθ(y)

for a pair of real and fake IDs. If the encoder network consists of fully connected layers with
d dimensions, the complexity is typically O(d).

❐ Backward Pass: The complexity is usually O(d) per parameter.

ii. Decoder Network :
❐ Forward Pass: It involves reconstructing the input image pair from the latent spaces zx =

Eθ(x) and zy = Eθ(y). The complexity is O(d).
❐ Reconstruction loss (i.e., Lx,x̂,y,ŷ

reconstruct): It involves computing the point-wise L1 loss and
SSIM loss for image reconstruction. The complexity is O(d).

❐ Backward Pass: The back-propagation for the decoder involves computing gradients concern-
ing its parameters. The complexity is usually O(d) per parameter.

iii. Adversary Network (Fake-sample Adversary):
❐ Forward Pass: It involves computing the predicted probabilities based on the encoded rep-

resentation Ey . If the adversary consists of fully connected layers with d dimensions, the
complexity is typically O(d).

❐ Adversary Loss (i.e., Lx,x̂,y,ŷ,zy
adversarial): It involves computing the loss based on the predicted

probabilities and the contrary target labels. The complexity is O(N) for N samples.
❐ Backward Pass: The back-propagation for the adversary involves computing gradients con-

cerning its parameters. The complexity is usually O(d) per parameter.
iv. Training Iterations :

– The number of training iterations influences the overall training complexity. Each iteration
involves a forward and backward pass for both the encoder and the adversary.
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II. Speed and Number of Parameters:

❐ GFLOPS: 23.109468608
❐ Number of parameters (million): 126.286971

6.5 The Limitations and Challenges

This section delves into the limitations and challenges that impede scientific researchers in their pursuit of
novel and impactful research in the realm of ID forgery detection.

❐ Lack of public datasets: The study is limited by the lack of publicly available datasets of forged IDs.
This makes it difficult to train and evaluate the proposed forgery detection method on a variety of forged
documents.

❐ Difficulty in simulating forgeries: It is challenging to simulate all possible forgeries that could be applied
to IDs. This includes artificially created forgeries that may not be detectable by the naked eye.

❐ Range of security features: The wide range of security features incorporated into modern IDs, such as
guilloches, holograms, micro-prints, watermarks, and optical effects, contributes to multiple layers of
identity security. However, this diversity also poses challenges in designing and implementing effective
innovative solutions for enhancing identity security.

❐ Limited comparative studies: The field of forgery detection on IDs is relatively young and a limited body
of research is available for comparison. This makes it difficult to assess the performance of the proposed
method definitively.

❐ Focus on private datasets: Many existing studies in this domain have been conducted using private
datasets, which makes it difficult to compare results and establish the method’s generalization ability.

The limitations of current forgery detection methods suggest the need for further research to develop
more robust and effective approaches. This includes efforts to expand and diversify the datasets used for
training and testing these methods. Additionally, it is crucial to develop techniques for simulating a broader
range of forgeries, enabling the development of more comprehensive and generalizable detection algorithms.

7 Conclusions and Future Works

In this paper, we have presented two novel ID verification models based on contrastive learning and adver-
sarial learning, respectively, for detecting fraudulent IDs using guilloche patterns. The models leverage the
distinctive features of guilloche patterns to effectively distinguish between genuine and forged documents.
The proposed models, ContFD and AdvFD, achieve remarkable performance, with accuracy and F1-score
surpassing the results reported in the existing literature. Comparative analysis reveals that ContFD-dual
emerges as the overall best-performing model, outperforming the previous models, CFD and FsAFD, across
all sample sizes and countries except Grc and Rus. For these two countries, AdvFD-SW outperforms the
other models. The incorporation of weights into the objective functions of both ContFD and AdvFD models
further enhances their performance.

The contributions of this paper include: (i) introducing two novel ID verification models based on con-
trastive learning and adversarial learning for detecting fraudulent IDs using guilloche patterns. (ii) employing
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contrastive learning to capture the discriminative features of guilloche patterns and distinguish between gen-
uine and forged documents. (iii) utilizing adversarial learning to improve the model’s generalization capabil-
ity and robustness against adversarial attacks. (iv) achieving state-of-the-art performance in ID verification
using guilloche patterns.

Future work in this field should focus on addressing the limitations identified above. One important area
of research is to develop publicly available datasets of forged IDs. This would allow researchers to train
and evaluate their methods on a wider range of forgeries and make it easier to compare results. Additionally,
researchers should continue to develop methods for simulating forgeries that are more realistic and challeng-
ing. This would help to ensure that the methods developed are robust to a wider range of forgeries. Another
important area of research is to develop multi-modal forgery detection methods that can analyze multiple
security features simultaneously. This would be more effective than single-modal methods, which can only
analyze one security feature at a time. Additionally, researchers should continue to develop comparative
studies that evaluate the performance of different forgery detection methods. This would help to establish
the best practices for forgery detection and make it easier for researchers to choose the right method for their
applications. Finally, researchers should focus on developing methods that can be deployed in real-time.
This would be valuable for applications such as border control and identity verification.

Funding This work has been financed by (le fonds unique interministériel) FUI IDECYS+ project (No.:DOS0098984/00)
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