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1. Introduction

The advancement of high quality digitization technologies and the pervasiveness of digital devices, such

as high quality document scanners and portable digital devices, has facilitated the transformation of various

document based information into electronic formats. Consequently, the quantity of digital born documents

have increased rapidly in a massive scale. Many libraries, museums and archives have shown their high

interest in mass digitization and transcription of their collected books, manuscripts and resources. Digitiza-

tion of these manuscripts and various documents has not only facilitated an easy and hassle free access but

also has facilitated to preserve them for a longer period. Administrative, bureaucratic and organizational

documents for communication and filing procedures, which were mostly paper-based in the past, are driven

into a digital environment by the ubiquity of different computation facilities. In all these applications, the

objectives are to preserve documents in a digital format, to encourage reduction of the use of papers and

to speedup the whole administrative process by improving accessibility and accountability in bureaucracy.
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To provide an easy access and retrieval service to a wider number of users, these digitized documents need

to be processed automatically. There exists several state-of-the-art textual analysis systems for automatic

document retrieval. These records mostly follow certain organizational document structures and are usu-

ally typewritten. These kinds of documents are generally indexed by using commercial Optical Character

Recognition (OCR) products. After the application of OCR technique, ASCII information of the characters

present in the document is obtained and are then used for indexation. These ASCII information then also can

be compared to the query by using a string-matching algorithm. However, the commercial OCR generally

fails to perform accurately on the documents with a high degradation, such as fax and scanned documents

(due to scanning and transmission noise). It also fails to correctly analyze/comprehend document structure.

Another stream of indexation techniques available in the literature is analyzing graphical contents present

inside documents. Content Based Image Retrieval (CBIR) is one of such technologies employed not only in

document images but also has a wide range of applications, such as medical, landscape, and satellite images.

Content-based Document Image Retrieval (CBDIR) is a subdivision of CBIR that involves a search process,

where the users mention a query in terms of a selected ROI or an image/graphics and all the document im-

ages which contains this ROI are retrieved as results. Trademark image retrieval (TIR) is also a branch of

CBIR [25] and many studies have been carried out in this particular area. Review of the techniques related

to trademarks is out of the scope of this article and is not included in this paper.

To improve the efficiency and effectiveness of services and operations, organizations have shown their

interests in implementing digital mail-rooms. The objective is reducing the burden of manual processing

of different administrative documents, including incoming mails, faxes, forms, invoices, reports, employee

records, health record, etc. One of the primary functionality of these digital mail-room is to have an au-

tomatic indexation of the incoming documents that results in automatic classification, distribution, easy

access and retrieval of these documents in future. As mentioned earlier, one possible solution is the use of

textual information for automatic indexation of these administrative documents. However, besides the pres-

ence of textual information, administrative documents often contain different salient entities, such as logos,

stamps/seals, layout-structure, signatures, and bar-codes, which corresponds to the organization, institute,

product or personnel. These salient entities have rich contextual representations and provides distinctive

features and characteristics for Administrative Document Image Retrieval (ADIR) and document classifica-
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tion. Therefore, many research works have been carried out to automatically detect logos/seals facilitating

such administrative document-based systems.

Logos detection and/or recognition inside the document images is a challenging task as logos are often

composed of quite complex symbols, graphical and textual components. In this article, we will mainly

focus on the detection of logos in administrative documents. There are some specific issues related to logos

that make the detection/recognition of them more challenging. For instance, logos can be placed at different

locations within an administrative document and the document can be rotated hence the logo would also

be rotated. Missing of some parts due to improper scanning is another issue in logo detection. Generally,

in logo based administrative document retrieval detection step might take place before or along recognition

step [9] [10]. Therefore, in this paper we have presented a novel approach for logo detection, which have

been tested on two datasets containing images of administrative documents.

The rest of the paper is organized as follows. In Section 2, some specific characteristics of logos are

drawn. In Section 3, an overview of the works in relation to logo detection is provided. Benchmarks and

datasets used for experimentation and analysis of the results are presented in Section 5. Discussion and

remarks are provided in Section 6. Finally, conclusion and future directions are drawn in Section 7.

2. Properties of Logo

Companies, institutes, and organizations use logo as a unique sign to pinpoint their products or services

to consumers and help customers to localize and remember organizations. Logos can also be used as

the means of authentication/verification. Moreover, logos bear some specific symbolism to convey some

message about the enterprise and their principal endeavor. There are various styles of logos available but

logos are bounded by certain design constraints as they need to be easily identified by human beings. A

logo may be completely graphical or textual or the combination of both graphical and textual components.

Some instances of such logo types are shown in Fig. 1.

The text in a logo is often modified for its aesthetic appealing and as a result, its segmentation for the

OCR processing may not be easy. Thus, the text can be viewed as a part of the logo, which needs to be

handled with other graphical components by a general shape analyzer. Similarly, if a logo contains texture

patterns, the texture patterns can be treated as a graphical pattern and can be processed together with other
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(a) (b) (c) (d) (e)

Figure 1: Some examples of logos in administrative documents extracted from Tobacco dataset [18] [2] [1].

logo components. Sometimes, logos are designed with a set of color combinations then the color informa-

tion could further be used for logo detection/recognition. Colors may sometimes be ignored as far as the

unique identity of a logo (represented as an intrinsic graphic pattern) is concerned [22][6]. Furthermore,

logos generally appear on a specific positions at the very top (or rarely at the foot) of administrative docu-

ments /forms of organizations in a printed or digitized format to be easily distinguishable. These specific

characteristics make logos more distinctive than other graphical entities present inside a document. Consid-

ering these properties, different types of approaches, e.g. signature, radon transform, and structural based

approaches, have been proposed in the literature for logo detection, recognition and retrieval [33] [37] [38]

[32]. In this article, we have mainly focused on the logo detection technique and that’s why we have dis-

cussed here only the related literature of logo detection in document image. A brief description of such

techniques are presented in the Section 3.

3. Literature review of Logo Detection Techniques

Logo based document image retrieval basically involves two tasks: the detection of logos in a document

followed by the recognition of the detected logos [14]. Considering these two related tasks the literature

reviews on this topic can be divided into two parts; one is related to Logo detection and other one is pertinent

to Logo recognition. Due to the advancement of image recognition techniques, the logo recognition, which

can be thought as one category of image recognition problem, several researchers have attempted logo

recognition problem more and earlier to the problem of logo detection on document images [15] [11] [20]

[19] [30] [8].

For logo detection in document images a number of techniques have been proposed in the literature.

Based on the used approaches, we have categorized these techniques into four main categories : (i) Con-
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nected component based approaches, (ii) Window-sliding (block) based approaches, (iii) Recognition based

detection approach, and (iv) Local descriptors based approach. In the following subsections, succinct de-

scriptions of state-of-the-art techniques for the logo detection are provided.

3.1. Connected Component Based Approaches

In connected component based techniques for localizing logos in document images, initially, a document

image is binarized and then connected component labeling process is performed to obtain a list of connected

components [12] [19] [31] [23] [13] [37]. Often the individual connected components e.g. individual

characters, parts of graphics etc. are merged by using Horizontal Run Length Smoothing Algorithms (H-

RLSA) and/or Vertical Run Length Smoothing Algorithms (V-RLSA) [34] to obtain complete entities e.g.,

words, logos and graphical symbols etc. Various features, such as convex hull, width, height, aspect ratio,

area and density [4] [23] [19], extracted from connected components are used to classify each connected as

a probable logo candidate or otherwise. Some notable classifiers, such as Decision Tree [4] [13] [12], and

Bayesian classifier [35], have been used for the classification purposes.

The technique presented in [19] uses a novel anchor line based approach for the detection and recogni-

tion of logo in document image. In the training phase by considering only one instance of each logo model,

the logo region in the document image is selected. Then, a set of convex hull based features from the logo

region are extracted and saved in a database along with the normalized logo image cropped from the doc-

ument image. All the features are indexed using a hyper-cubic structure, which leads to a fast matching

process. In the detection and recognition phases, connected component labeling is performed on the image

and then convex hull based features are matched with the features of logos, saved in the database. In order

to check the consistency of pairwise distances between feature candidates and logo prototypes, the concept

of anchor line is further used in Li et al.[19]. Using a consistent mapping of the features extracted from a

testing image, it derives the position of a logo by a bounding box inside input image as the probable logo

candidate. This probable region of the logo is then normalized and matched with the saved logo prototypes

to ensure a correct matching. No clear description is given for generating connected component of the

entire logo region and also segmenting out the text lines, consisting of several isolated characters, repre-

senting each isolated connected components. Moreover, when the features extracted from all the connected

components existing in a document and are matched with the features of logo, saved in database, there will
5
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be many spurious matches. It is not clear that how the authors have distinguished between good matches

against the spurious ones.

Another similar approach is proposed in [23], where the document images are first preprocessed by

applying a skew correction followed by a morphological dilation technique and then a binarization. After

segmenting out the text lines, the contours of the connected components are detected. The outer contours

of the connected components are then grouped together to create outer contour strings (OCSs). An OCS

is a sequence of outer contours that are located side by side from left to right. Coarse and finer layers of

features are extracted from each OCS. The coarse feature considers graphical information and domain about

OCSs, such as OCSs position and size, whereas finer features characterize contour regions using gradient

based representation, computed directly from the gray scale images. After extracting these features, Gentle

Boost [10] classifier is used for classifying any particular OCS as a logo or a non logo candidates. Due to the

segmentation errors, the region of a complete logo can be divided into several parts. To correct this issue, the

OCSs are grouped by using probability scores and neighboring criteria between two isolated OCSs. Proper

binarization in the presence of noise, occlusions and correct segmentation of text lines are the critical issues

of this approach. Moreover, there are several parameters heuristically fixed in this method that make it hard

to generalize this technique for other databases.

A layout independent and segmentation free logo detection method using multi-scale boosting strategy

is proposed in [37]. An initial two-class classification is performed using Fisher classifier at a coarse image

scale on each connected component to discriminate logo regions from non-logo regions. Then, the probable

candidate logo region is successively classified at finer image scales by a cascade of classifiers. However,

several parameters to be set for using these classifiers that makes this approach dataset dependent. The

training and testing sets have not been clearly mentioned in this paper. Moreover, the accuracy and precision

of this technique is far from attaining the best values.

Another very similar kind of technique as the one presented in [23] is proposed in [12]. This approach

also starts employing a noise reduction followed by an image binarization, and horizontal dilation for joining

the neighboring components. Features are then extracted from the connected components and a decision

tree classifier is used for classifying a connected component into either a logo or a non-logo candidate.

This approach is a quite basic one and there are other improved approaches, which has achieved better
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performance such as the one mentioned in [4].

The approach proposed in [13] can be divided into two primary steps. First, a foreground pixel is taken

as a seed with a 3 × 3 window as a feature rectangle candidate. Then, this feature rectangle candidate will

grow with boundary extension until a final feature rectangle is obtained or the growing process is stopped.

All objects as a whole embraced by the generated feature rectangles are logo candidates. Second, a decision

tree classifier is employed to quickly discard the candidates whose likelihood to be logos are very small.

Through this two stage processing, most false positives are removed from the logo candidate pool, leaving

only a small number of logo candidates to be verified with a logo database for further logo recognition or

verification stage. However, one of the primary issue with this method is the need of an already prepared

dataset for not only recognizing logos but also for detecting logos. The technique for searching a probable

position of a logo is quite rigorous and not definitive, which succumbs to generate many false positives.

Moreover, the experimental results are not well explained and not even comparable with other techniques.

3.2. Recognition approach based logo detection

As a new category of logo detection techniques, a unified framework for the detection and recognition

of logos in document images has been proposed in [35]. In this work, author has improved the technique,

mentioned in [13] by using a Bayesian Belief Network [9]. This approach also relies on candidate pool

generation of Feature Rectangles (FR), based on the connected components which are pruned later. In order

to make the module dynamic and interactive, the merging and cutting of FR’s is also introduced. During this

step-by-step framework manipulation process, FR based located candidate regions undergoes an adjustment.

The boundary of these rectangles can expand or can also contract. This approach is a multilevel staged step-

by-step recognition process. At each step, FR based connected components are labeled and then signature

curves are extracted. As mentioned before that the shape of FR evolves also with merging and/or cutting of

some neighboring FR. At each step, the signature curves are extracted of the newly evolved logo and then it

is matched with the stored signatures of the logos, present in the database. Later, verification is performed

based on the global invariants, which is an essential step for the recognition of logos. This approach shows

better performance and it’s accuracy is comparable with the best performing techniques for logo detection

[4] [19].
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3.3. Sliding window based logo detection

In this category of logo detection techniques, local detectors/descriptors, such as density, probability and

blurred shape have been used [24] [29] [3] [4]. These features/descriptors are computed from the regions

of interest or patches extracted by a sliding window, a connected component analysis or a segmentation

technique. In this sliding window based approach [24], the spatial density of foreground pixels in each

window is calculated by using mountain function. Then a window is classified based on a threshold value

as logo or non logo.

Inspired by the approach mentioned in [24], a similar technique is proposed in [3]. This pipelining

process starts by binarizing a gray scale image followed by reduction of image size for faster computation.

Then, noisy pixels and texts are eliminated from the normalized image and then the image is transformed

under stippled lines or isolated points for preserving the object compactness. The reduction of image size

is realized by dividing the image into blocks and then transforming the blocks into a single pixel whose

monochrome color is decided based on the dominance of either black or white color in the block. Then a

morphological dilation is applied to join neighboring components followed by employing a sliding window

based approach to discern the feasibility of being a logo or a non-logo region. The feasibility of being a logo

or non-logo region is decided based on the foreground pixel’s density, calculated using mounting function,

which is also been adapted to determine regions of strong colorimetric uniformity. The experimental pro-

tocol and dataset used for performance evaluation are not comparable with the state of the art techniques,

such as [19].

The work described in [29] is based on the computation of Blurred Shape Model (BSM) descriptors as

features. In order to localize a logo within a document image, a sliding window approach is proposed to

compute a normalized two-dimensional cross correlation between the BSM description of a model logo and

the BSM description of a document. A peak value should be formed at a location in the document where

it has a high probability to be similar to a given logo model. This process is repeated for each logo in the

knowledge database and the peak having the highest response would be the better match between a specific

zone of the document and logo model, which intrinsically define the class of the document as well. In order

to increase the robustness of the method, the normalized cross correlation is further calculated for both the

BSM description and inverse of the BSM description. In the final step, the probability maps obtained from
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both the normalized cross correlations are multiplied/combined to get rid of the background noise. The

advantage of this approach is that it can not only have the class of a document but also the location within a

document where a logo may appear. However, key points and features for matching should be calculated off-

line, otherwise, this approach is computationally expensive for locating the logos in a full document image.

Moreover, the dataset used by the author is not a public one, so the results and experimental protocol are

not comparable.

3.4. Logo detection technique based on local descriptors

In this category of systems, the logos are detected based on the detection of key-points followed by

the extraction of local descriptors. Local key-point detectors, such as Hessian [14], Harris-Laplace [27],

Difference-of-Gaussian (DoG) filter [17], Canny edge and He & Yung detectors [38], are employed at pixel

level to extract a set of key points. The extracted key points are then exploited by local descriptors, such as

Shape Context (SC) [27], [38], [28], Scale Invariant Feature Transform (SIFT) [29] [14] [17] [16], Binary

Robust Independent Elementary Features (BRIEF) [16] and Speeded Up Robust Features (SURF) [14].

The technique mentioned in [14] detects Hessian key points and describe these key points based on

SURF descriptors. The SURF descriptor of the patch around each key point is calculated by first equally

subdividing a given patch into 4 × 4 grid. For each subsection, the Haar wavelet response Dx and Dy are

calculated in the x and y directions, respectively. To fasten the matching process, feature level indexing is

performed to group feature vectors that are distinct along the same dimensions together. A two-step ap-

proach is used which take into account at first the orientation information provided by interest points, found

using fast Hessian detector. As the second step,a triangle based stricter filter is used to find a resemblance

between query and document image feature points. Another local descriptor based logo detection technique

is attempted by [27], in which the logo are represented by a local descriptor applied to a set of previously

extracted key-points. The key-points are extracted by using Harris-Laplace corner detector. Harris-Laplace

corner detector extracts points with high curvatures. The scale of the region is automatically selected to

compute the local descriptor. Shape descriptor is further calculated from each key-point to characterize the

region. The matching score between key-points extracted from a document and the ones of a logo model

is calculated. A bag of visual word model is further used for logo detection in [27]. This approach is not

comparable with the results of state-of-the-art techniques for logo detection.
9
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In [16], key points are extracted and described by Scale Invariant Feature Transform (SIFT) descriptor

for both a query document image and a given set of logos (logo database). In [16], BRIEF descriptors are

are used as features. Then the key points in the SIFT feature space are matched using nearest neighbor

rule. The key-points are further filtered using BRIEF descriptor. Then, the matched key-points are clustered

by using Density Based Spatial Clustering of Application with Noise (DBSCAN). A cluster containing the

maximum number of matched key-points is considered as logo region candidate. Finally, in the decision

step, a normalized accumulating histogram is computed to measure dissimilarity between a logo region

candidate and each logo in the gallery. Incorrectly matched key-points are rejected by using homography

based RANSAC technique. Although this approach has shown some promising results but due to the use of

same pipelining techniques as the one done in [27], this approach is not suitable for real time application.

Some speed enhancement can be achieved by calculating and indexing the features beforehand. Hence, this

approach has high dependency on database and it is difficult to be adapted on new databases.

In [38], authors have proposed the approach for logo detection/matching by extracting corner features.

At first, object contours are obtained from the edge image extracted by the Canny edge detector and then the

gaps along the contours are filled. Corners are detected from the contour image. The dissimilarity between

two shapes are calculated by using four separate dissimilarity techniques such as: Thin Plate Spline Bending

Energy, Shape Context Distance, amount of anisotropic scaling between two shapes and another distance

measure based on the registration residual errors under the estimated non rigid transformation. An overall

shape distance is then calculated by a weighted sum of these separate distance measures. Although, it has

shown some promising performance for logo matching but could not achieve the superior performance in

comparison to other state-of-the art techniques, e.g. [4] [19].

4. Outline of the Proposed Approach

The approach is outlined in the following section, where initially a method is proposed to automatically

choose training documents to train the proposed system. The proposed approach is then tested over a test set.

Before going into the details of the proposed approach, the dataset used are described below to understand

the nature and characteristics of data used for experiments.
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4.1. Dataset Description

For evaluation of the proposed approach 3 different datasets are used. First dataset is Tobacoo-800,

which contains 1292 documents of which 412 contain 432 logos [18] [2] [1]. This dataset is publicly

accessible document image collection with a realistic scope and complexity, which is important for the

document image analysis. A significant percentage of Tobacco-800 dataset are consecutively numbered

multi-page business documents which makes it valuable testbed for various content based document image

retrieval approaches. The resolution of documents in Tobacco-800 vary significantly from 150 to 300 DPI

and the dimensions of images range from 1200 × 1600 to 2500 × 3200 pixels.

The second dataset is IteSoft-1 used in [29]. This document consist of 3000 documents of which all of

them contains between 1 and 6 logos. Number of classes of documents are reported to be 204.

Third dataset is the Itesoft-2, which is recently provided by Itesoft company in collaboration with Poly-

Tech Tours, France. This dataset is composed 8200 real-life document images of which 5748 images contain

between 1 to 8 logos. There are 1274 number of classes of logos exists in this dataset.

4.2. Automatic Generation of Training and Testing sets

The ground truth of the Tobacco-800 dataset is generated by following certain configuration. There are

a total 36 (p) different classes of logos present in the database and each class contains multiple instances

(r). Let’s denote the classes of logos by (crp; p = 1, 2, ..., 36; r = 1, 2, 3, ....). The naming convention used

for all the cropped logos based on the ground truth information is ”p r.png”. The idea is to automatically

generate a bias-less and repetitive training set for training the proposed system. Moreover, the training set

should contain approximately an equal number of examples, at least one sample, from every class of logos.

To achieve this objective, an algorithm for the automatic generation of training set from the dataset corpus

is proposed. Two parameters are taken from the user. The first one is the ”number of training samples”

needed (T) and the second one is the ”minimum number of instances present in every logo class (E)” for

being considered to participate in the training set. From the Ground Truth (GT) of the Tobacco-800 database,

logo images are cropped and manually labeled by using the following naming convention ”p r.png”. The

following mentioned Algorithm 2 describes the automatic technique of generating training data. At Line-1,

the logo class name (p) and the instance number (r) are obtained from the image name ”p r.png”. Then a

Hash-Map data structure (H) is used for organizing each logo instances (organized by considering instance
11
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number (r) as Hash-Map values against logo class which is considered as Hash-Map key (p). In Line-4, one

vector data-structure (U) of the size of Hash-Map (H) is considered. This vector contains another vector of

integers. Line-5 says that run the while loop until the number of training samples mentioned by user are

not gathered. For the very initial iteration (Line-6), i.e. when iCnt = 0, loop through all the logo classes

by looping over the keys of Hash-Map H (Line-8). Get the logo class name (Line-9; H(i). f irst) and all the

instances of this particular class (Line-9; H(i).second). Then generate a random number between 1 to total

number of instances of this particular class (Line-11). Keep this random number (r) in the vector R and

then put the vector R in the vector U. Consequently, get the particular image name and keep it as the first

training image.

Now from the second time onwards, the control will always enter in the else part (Line-21) as now

iCnt > 0. In the same fashion, loop through Hash-Map entries (Line 22 to 24) and obtain the logo class

name (Hash-Map key; H(i). f irst) and corresponding instances (Hash-Map value; H(i).second). Line-25

obtains a vector containing indexes of the instances, which have already been employed/considered as

training samples from this particular logo class (U.get(eCnt)). The idea is to gather training samples in

a cyclic manner. One cycle completes by randomly considering one instance from each class of logos in

the training set. After completing first cycle the next cycle initiates. This process continues until all the

desired training samples are not gathered. The next task is to check whether we have not surpassed the limit

of taking training instances from a particular class. This check is performed first by subtracting E from

the total number of instances (allInstances.length()) of a particular logo class. This subtraction gives the

total number of instances that can be considered from this class in the training set. The ”IF” condition in

Line-26 checks whether the number of elements in Y is less than or equal to the aforementioned subtracted

value. The second ”IF” condition in Line-26 simply checks whether the total number of instances under a

particular logo class is more than the user defined parameter (E). If both conditions satisfied, then we try

to randomly find another instance (index of the instance) which have not been yet considered under this

particular logo class. This is done by continuously running a while loop (Line-28) until we obtain another

unique random number which is not present already. This process is continued for all the logo classes and

the cycles are repeated until we obtain the required number of training samples to exit from the loop (Line

35-36).

12
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So, by following the above mentioned approach devised in Algorithm 2, the training set is repetitively

and automatically generated. Thanks to this automatic generation of training set that allows us to carry out

several experiments in order to evaluate the proposed logo detection system.

4.3. Image Segmentation Technique

We have adapted a technique called as Piece-wise Painting Algorithm for the segmentation of text and

graphics regions. This approach is originally proposed in [5] for text-line segmentation. Here, we have

adapted this approach for the purpose of logo region localization. The algorithm starts by dividing the

image into a number of vertical segments called stripes from the left to right direction. The direction of

traversing an input image (from left to right or from right to left) does not affect the performance of the

proposed algorithm. In this work, the stripe width (W) is considered as 5% of the document image width.

Since the image is divided from the left to right direction, the width of the last stripe may become smaller

or larger than other stripes. To simplify this problem, the width of all other stripes ( 1th to (P − 1)th ) are

kept same except last stripe (Pth). The process of getting each stripe from the image is mentioned in the

following Algorithm 1.

Stripe Width(W) =
I.Cols × 5

100
; No. of Possible Stripes(P) =

I.Cols
W

;

I.Cols = No. of columns present in the image
(1)

After dividing each image into stripes (see Fig. 2a), the stripe image is complemented (see Fig.2b) and the

small noises, e.g., dots and/or isolated tiny foreground pixels, are removed by applying a morphological

closing followed by a morphological opening operations. The gray value of each pixel (either 0 or 255)

in each row of a stripe is modified by changing it with the average gray value of all pixels present in that

particular row of a stripe. The Gray Level Mean (GLM) value of each row in every stripe is calculated by

the following Equation 2.

GLMi,k =

∑
j
ImgStripei j

stripeWidthk
; k = 1...P;

j = ((k − 1) × (stripeWidthk + 1)) to (k × stripeWidthk); i = Row Number

(2)

13
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Algorithm 1: Pseudo code to obtain the stripes
startCol = 0
for i← 1 to (P − 1) do

stripe.start = startCol
stripe.end = (startCol +W)-1
startCol = startCol +W

end
lastStripe.start = startCol
lastStripe.end = I.Cols

In the Equation 2, GLMi,k is the average gray value of all the pixels placed in the ith row and kth

stripe. ImgStripei, j is the gray value of the ith row and jth column of the ImgStripe. The width of kth

stripe here is stripeWidthk. The obtained image stripe by GLM operation is shown in Fig. 2c. After

obtaining the GLM image, the Otsu’s binarization technique is applied on each stripe with a threshold

of 50 (chosen heuristically) to obtain a painted binary image as shown in Fig.2d. The white and black

rectangles/bands represent the foreground and background regions respectively, where the foreground pixels

principally represents the text-line regions in the considered image stripe.

14
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Algorithm 2: Generation of Training and Testing Set
Input: T (Number of training samples needed), E (Minimum number of logos present in

any logo classes)
Output: U (Logo image indexes from each class)

1 Get logo class (p) and instance number(r) from image name i.e.
”p r.png”

2 Use hash map H to arrange the logo image names by using p as
key and r as values

3 iCnt = 0; itemCnt = 0
4 Initialize a vector U of the size H, which will contain

another vector of integers
5 while itemCnt< T do
6 if iCnt == 0 then
7 eCnt = 0
8 for i← 1 to (H.length()) do
9 className = H(i). f irst

10 allInstances = H(i).second
11 if allInstances.length() > E then
12 Generate a random number r between 1 to

allInstances.length()
13 Vector < Integer > R
14 R.put(r)
15 U.put(R)
16 end
17 eCnt + +
18 end
19 iCnt + +
20 end
21 else
22 for i← 1 to (H.length()) do
23 className = H(i). f irst
24 allInstances = H(i).second
25 Vector < Integer > Y = U.get(eCnt)
26 if ((Y.size() <= (allInstances.size()− E)) && (allInstances.size() > E)) then
27 . continue while loop until an unique random number is not obtained.
28 while True do
29 Generate a random number r between 1 to

allInstances.length()
30 boolean rightRandFlag = f alse
31 Check whether this random number is already

present in Y or not
32 end
33 Y.put(r)
34 U.put(R)
35 if iCnt== T then
36 Exit from all the loop
37 end
38 end
39 end
40 end
41 end

As shown in Fig. 2e, the tiny black space between two white blocks, e.g., the one which is shown by

15
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(a)
(b) (c) (d)

																																																																			 																						 	

(e)

Figure 2: The result of each steps, obtained from the application of Piecewise Painting Algorithm on a document image. (a): A
vertical stripes obtained from the full image. (b): The binarized, complemented and noise removed image. (c): Row averaged
stripe image. (d): Otsu’s binarization result on row averaged image. (e): White run gap shown by both sided sky colored arrow
which is different from the gap between the text lines.

two sky-colored arrow in Fig.2e, should be converted into white (the magnified view of the ROI marked by

dotted yellow color of left image is shown at the right of Fig.2e) as this region should be the foreground

region. But the problem is how to distinguish between this kind of black spaces and a general interline

spaces (also a black region). To correctly obtain intra text line gap between intra text line (shown by

two sky-colored arrow in Fig.2e), following Algorithm 3 is devised. Please note that in Algorithm 3, it

is considered that foreground pixel is black (0) and background pixel is white (255), which is contrary

to the image shown in Fig. 2e. The idea is to obtain white background pixels which starts with a black

(foreground) pixel and ends with another black pixel. Based on this logic, a series of background pixels

located at the beginning rows (due to the presence of border, any initial background pixel should not start

with these series of background pixels should not start with foreground pixel/s) and at the ending rows (due

to the presence of page border, a series of background pixels should not end with a foreground pixel/s)

could be ignored. Line 7 in Algorithm 3 checks whether the current pixel is a background pixel or not then
16
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(a) (b) (c)

(d) (e)

Figure 3: The result obtained after filling-up the gaps within a text line. (a): The vertical stripes obtained from the full image. (b):
The image after binarization of the row averaged image. (c): The binarized stripe image obtained after filling-up the gaps exits
within text lines. (d): The complete binarized image after row averaging operation. (e): The complete binarized image obtained
after filling-up the gaps exits within text lines (the filled up gaps are painted in orange color just for visualization purpose but in
the case of our application these gaps are painted in black/ foreground pixels).

it checks in Line 8 whether the previous pixel was a foreground pixel or not. If this condition satisfies then

we obtain the very first required background pixel. After obtaining the first background pixel of oneFlag

becomes true and then all the other adjoining pixel in this same background band is obtained by entering in

the ”ELSE-IF” loop mentioned in Line 12-13.

Otherwise, if the current pixel is the very first (checked in Line 15 by verifying the status of zeroFlag)

foreground pixel (Line 14), the process of counting and storing the location of first foreground pixel is given

in Line 16-18. In Line-19, the 1st ”IF” condition checks whether the previous pixel was a background pixel

or not, whereas the 2nd condition checks whether the control has not reached at the last row of the image

17
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(moreover pixel at the last row should not be a foreground pixel and the background band1 before it

1Fore-ground and back-ground band means a series of fore-ground and back-ground pixels

18
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Algorithm 3: Obtaining and filling-up the gap within a text line
Input: I (The stripe image after row averaging and binarization )
Output: All the starting and ending positions, lengths of foreground and background

bands.
. It is considered that foreground is black (0) and background is white (255)
1 oneCnt = 0; oneFlag = false
2 zeroCnt = 0; zeroFlag = false
3 j =(I.Rows)/2 . only considering the middle column
4 startBlackRun = -1; endBlackRun = -1
5 startWhiteRun = -1; endWhiteRun = -1
6 for i← 2 to I.Rows do

. Only take those white runs (back-ground) which are beginning and ending with
black pixel (fore-ground)

7 if (Ii, j == 255) then
8 if (Ii−1, j == 0) then

. If the current pixel is white then check whether the pixel before was black
9 oneCnt = 1

10 startWhiteRun = i
11 oneFlag = true

end
12 else if (oneFlag) & (i , (I.Rows) ) then
13 oneCnt = ++

end
14 else if (Ii, j == 0) then
15 if (zeroFlag == false) then

. Very first pixel of the black or foreground stripe
16 zeroCnt = 1
17 zeroFlag = true
18 startBlackRun = i

. Following oneFlag variable in ”IF” condition confirms that we have
already traversed a white band which starts and ends with black pixel.

19 if ((Ii−1, j == 255) & (i , (I.Rows)) & (oneFlag == true)) then
20 endWhiteRun = i
21 startWhiteRun = −1 . reset the value
22 endWhiteRun = −1 . reset the value
23 oneCnt = 0; oneFlag = false

end
end

24 else if (zeroFlag == true) then
25 zeroCnt ++

end
. We have encountered the last black pixel of the black band and the next
pixel is white or the next pixel is the end pixel of image

26 if ((Ii+1, j == 255) OR (i == (I.Rows − 1))) then
27 zeroFlag = f alse
28 endBlackRun = i
29 blackCnt ++
30 zeroCnt = 0

end
end

end
end

should not exist. But if it exits then it is irrelevant and should be ignored). The third ”IF” condition checks

19
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whether the control has already passed through the background pixel/s before arriving on this line of code.

If all of these three conditions satisfies then it confirms that the ending of a required black band, hence

the ending position is stored and other needed variables are reset (Line 19-23). Line 24-25 counts the

continuous adjoining foreground pixels if we already have encountered (Line 24; zeroFlag == true)

the first white (foreground) pixel. At last, the ”IF” loop mentioned in Line-26 checks whether we are

currently encountering the last foreground pixel or we have reached the last row of the image then store the

last foreground pixel location and increase the counter for foreground pixel.

After obtaining all the starting and ending positions, lengths of foreground and background bands from

all the stripes, the mean height of the foreground bands is calculated to understand the average height of text

lines in the image. The technique to calculate mean value from an array of elements is given in Algorithm

4. The Algorithm 4 starts by sorting the array of elements in ascending order. We have proposed a binning

based approach to divide the elements into 10 bins (this number can be changed but it is experimented that

dividing into 10 bins give good results in most of the cases). Line 7-10 computes the lower and upper

limit of values whereas Line 6 defines the width of each bin. In Line 13, the value is checked against

the computed bin width, if the value is lesser than bin width then the value is stored in first bin otherwise

the remainder after division (getDivRemainder) is calculated. If getDivRemainder is greater than

zero then the probable bin in which the value would belong can be calculated by getVal
binWidth+1 otherwise the

probable bin would be getVal
binWidth . After computing the probable bin index for each values, the values are

rechecked to verify that does it really belongs to that particular bin or not (Line 16). Based on the number

of elements in each bin, the top 2 bins are considered and then mean, standard deviation of the values

belonging in these bins are calculated. Now all the values in the array is checked against this condition

of ((meanVal-stdVal) and (meanVal+stdVal)). Only those values are considered which satisfies

this condition (Line 29) and then at last the mean is computed from these values only.

After computing mean height of foreground bands (avgForegroundHeight), we look into each

stripe and first checks only those background bands which are initiated and ended with foreground bands

(background band is in between two foreground bands). It is first checked that the background band height

should be less than avgForegroundHeight. Then the following constraint is verified for considering

20
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Algorithm 4: Calculate mean value of an array of elements
Input: An array of values
Output: The mean of the values in the array

1 Sort the array elements in ascending order
2 Get last element of the sorted array as the maximum value

(maxVal)
3 Get first element of sorted array as the minimum value (minVal)
4 noOfBins = 10
5 if (maxVal - minVal) > 50 then
6 binWidth = (maxVal - minVal) / noOfBins
7 for i← 1 to noOfBins do
8 binLowerBound = minVal + (binWidth×i)
9 binUpperBound = minVal + (binWidth×(i + 1))

10 For each bin, store it’s lower bound (binLowerBound) and
upper bound (binUpperBound)

end
11 for k ← 1 to noOfArrElements do
12 getVal = sortedArr.at(k)
13 if getVal > binWidth then
14 getDivRemainder = getVal % binWidth
15 binApprox = (getDivRemainder > 0) ? (getVal/binWidth+1)

: (getVal/binWidth)
16 if (binWidth×(binApprox-1))≤getVal≤(binWidth×binApprox)

then
17 if binApprox>noOfBins then
18 binApprox = noOfBins

end
19 if binApprox<1 then
20 binApprox = 1

end
21 Store array indexes and values in corresponding bins

end
22

end
else

23 binApprox = 1
24 Store array indexes and values in corresponding bins

end
end

25 Based on the number of elements in each bin, consider top 2
bins

26 Calculate mean (meanVal) and standard deviation (stdVal) of
these elements obtained from top 2 bins

27 for k ← 1 to noOfArrElements do
28 getVal = sortedArr.at(k)
29 if ((meanVal-stdVal)≤getVal≤(meanVal+stdVal))&(getVal > 8)

then
30 Store these elements in an new array called refinedArray
31 If size of refinedArray is less than 3 then start over

again by removing this condition (getVal > 8)
end

end
32 Calculate mean value of the elements stored in refinedArray

end
33 else
34 Calculate mean value of the elements stored in array

end
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any background band pixels to be converted into foreground pixels. The total height of top foreground band

(topForegroundBand), bottom foreground band (bottomForegroundBand) and the in-between

background band (backGroundBand) should be less than: (avgForegroundHeight+ avgForegr-

-oundHeight × 30
100 ). So, by applying aforementioned approach, the gap exists within a text line could be

distinguished and could be converted into foreground pixels.

4.4. Feature Extraction

By employing the above mentioned segmentation technique for localizing the probable position of logos

in the image several patches are provided. However, among all the extracted patches, only a small number

or none of them contain a logo or parts of a logo. To prune the unnecessary patches and to obtain the most

probable logo patch(es), in this research work two novel probability based feature extraction techniques

by considering prior knowledge of logo positions are proposed. Moreover, a few geometric shape based

features are also included in the feature set for this purpose. Details of these proposed feature extraction

techniques are presented in the following sections.

4.4.1. Frequency Probability Based Feature

With the help of prior knowledge of a logo position, gathered from the training set, a document can

be represented in different ways, such as probability map for blurred shape model [29] and geometrical

position [23] [37] [38]. The frequency probability map is computed based on frequent appearances of logos

in different positions of document images during training step as follows.

Suppose a document image is denoted by IK
P×Q, where P and Q are the height and width of the image

IK , where K varies from 1 to T. T denotes the no. of document images used as training samples. Let’s

define a matrix FMP×Q as the frequency probability matrix of size P × Q which is initialized by setting 0 at

all the cells. The height (P) and width (Q) of the matrix is calculated by taking maximum of the heights and

widths of all the training images. Throughout the training phase, the matrix FM is modified by employing

FMi, j = FMi, j + 1 if IK
i, j, which is a pixel of logo component, positioned at the coordinate (i, j) in the image

IK . Otherwise, if the pixel is not a part of a logo component, no change will be performed in FMi, j. Please

note that the original (i, j)th location of the pixel in image IK is mapped into the Frequency Probability

matrix (FMP×Q). To normalize the values of FM matrix between 0 and 1, each cell value is divided by the
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maximum value of FM by using the formula FMi, j =
FMi, j

Max{FM} ; i = 1, 2, ....P; j = 1, 2, ....Q. As a result,

all the elements of FM have a value between 0 and 1 and the matrix cells/elements close to value 1 signify

a higher probability of the presence of the logo and the elements with values close to 0 indicate lesser

probability of representing logos at those positions. To obtain the Frequency Probability (FP) feature of a

patch, the patch is mapped on the Frequency Probability Matrix (FM) by considering the coordinates of the

patch. Then, the average probability value is computed from the probability values corresponding to all the

foreground pixels present in that patch in (FM) matrix.

4.4.2. Gaussian Probability Feature

In the work mentioned in [36], the positions of logos in video frame have been characterized by using

four different mixed Gaussian distribution. Similar to the video frames, logos in document images have also

a clear positional preferences in contrast to text content and other information. The logos have quite a high

probability of occurring at the top and at the bottom than at the center of the documents. To calculate this

attribute, except using the FP feature, the distance of a patch from predefined positions of different logos is

also considered as a feature in the proposed feature set. To compute this feature, we use the same Frequency

Probability matrix (FM). Based on the analogy performed to find the higher probability of logo locality, it

is observed that the logos belongs to the top and bottom than at the center of the documents. Due to this

reason, the Frequency Probability matrix FM is divided into 3 vertical blocks. Now each vertical block is

divided into 3 horizontal blocks result in 9 blocks in total. Only top 3 and bottom 3 blocks are considered to

approximate the probability by a mixed Gaussian distribution. Since, six blocks are considered for modeling

the logo positions, six bivariate Gaussian distributions are used to represent this probability. The coordinates

of non-zero pixels and corresponding center of gravity (C.G.) of non-zero pixels are obtained in each block.

From the coordinates of each of such six C.G, the Gaussian probability (GP) feature for an extracted patch

is calculated by using the following formula :

Mean of all the non-zero pixels’s X coordinates, present in each block: µi
x; i = 1, 2, ..., 6

Mean of all non-zero pixels’s Y coordinates, present in each block: µi
y; i = 1, 2, ..., 6

Standard-Deviation of all the non-zero pixel’s X coordinates, present in each block: ζ i
x; i = 1, 2, ..., 6

Standard-Deviation of all the non-zero pixel’s Y coordinates, present in each block: ζ i
y; i = 1, 2, ..., 6

Let’s assume there are p number of non-zero pixels present in any particular block. Another parameter (ρ)
23
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is calculated for each block by using the following Equation3. So, for each of the 6 blocks (i = 1, 2, .., 6 ),

these parameters (µx, µy, ζx, ζy, ρ) are calculated by using only the training set.

ρi =

p∑
t=1

(Xi
t − µ

i
x) × (Y i

t − µ
i
y)

p
(3)

P(
Lp
Pp

= 1) =
1

2πζxζy
√

(1 − ρ2)
× e
− 1

2×(1−ρ2)
×

(x−µx)2

ζ2
x

+
(y−µy)2

ζ2
y
−

2ρ(x−µx)(y−µy)
ζxζy ; p = 1, 2, ....., n (4)

While testing, after obtaining the patches from the test image, the centroid of the probable logo patches are

considered for the computation of Multi-modal Gaussian Feature. In the above mentioned Equation4, the

centroid of patch P is denoted by Lp = (x, y). Based on the location of the patch’s centroid in any particular

block out of considered six (blocks top left, top center, top right, bottom right, bottom center and bottom

left respectively), corresponding parameters of that specific block is considered to calculate this feature by

using the above mentioned Equation 4. P( Lp
Pp

= 1) is the Gaussian probability (GP) of the pth patch by

assuming that there are n number of patches exists in this test image. Where, Lp = (x, y) denotes location

of the centroid of the pth patch.

4.4.3. Convex Hull Based features

In order to better describe a logo prototype using connected components, a convex hull is formed for

every connected component. These features of convex hull have been successfully used for logo detection

and recognition in [19]. For a convex hull, its orientation θ using the 2nd order moments, the square root

of the variance of the main axis with respect to the orientation σmax, the square root of the variance on its

orthogonal direction σmin, the maximum length lmax, minimum edge lmin and the square root of its size lsize

are also calculated. By using these values, a connected component descriptor ConComp is constructed as:

ConComp = {kr,kσ,kS ,kl,kb, lsize, IDs, ~ac};kr =
lmax

lmin
;kσ =

σmax

σmin
;kS =

lsize

σmax
;kl =

lsize

lmax
(5)

In the above mentioned Equation 5, kb means blackness which is calculated by dividing the number of pixels

of the connected component and the area of the convex hull. The descriptor elements kr,kσ,kS ,kl,kb are
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invariant to image scaling and rotation. The feature level matching using them is only a calculation of

Euclidean distance. Let’s consider that there are p classes of logos present in database. Any one particular

kind of logo may appear one or more than one time in the same document. The IDs is used to save logo

class information corresponding to any particular patch. The parameter ~ac represents the anchor line of the

connected component.

4.4.4. Identification of logo-patches by using decision tree

Logo detection in document images is a particular field where only a few instances per class are avail-

able for training. Moreover, the text content (non-logo portion) is much more than the logo contents in

document images which results in a class imbalanced data problem. See the result of employing PPA on a

document images where among all the extracted patch only one patch is the logo patch. Decision tree (DT)

perform well in such a scenario and it has been reported being more suitable to deal with such problems

[26]. Furthermore, DTs are designed without assumption about the features space distribution and they can

perform better using geometric and domain-based features; as these features are statistically independent,

non-homogeneous and non uniformly distributed in most of the cases [26].

In this research work, a decision tree (DT) is used as classifier for the coarse classification of patches

into logo and non-logo patches following feature extraction. To design a DT, several automatic algorithms

such as CART, C4.5 and CS-C4.5 have been proposed in the literature. Here the CS-C4.5 is used to design

the DT. The CS-C4.5 is a cost sensitive C4.5 DT, which considers a cost matrix during the pruning step to

take care about the misclassification of logos. It also uses gain ratio as splitting criterion to deal better with

the class imbalanced dataset [26].

Employing the proposed DT, a small number of patches (logo-patches) with higher probability of con-

taining logos are obtained. Due to the degradation, low quality image and multi-part logos, we sometimes

may not get appropriate patches for logos during the painting operation. Furthermore, very small logo-

patches may be eliminated using the proposed DT. To accomplish this problem, the results obtained by

employing the proposed DT is subjected to a dilation operation using a structuring element of length MG

and width 1, where MG is average gap between extracted patches. The length of structuring element is

decided based on experimentation. These patches are called Region of Interest (RIs). For each RI, we fix

a minimum bounding box, which is then mapped on the original document image. These bounding boxes
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shown by red may be extended or tightened to have a finer minimum bounding box (green). The foreground

information bounded by minimum bounding boxes (shown in green) is considered for further process at the

fine level of our scheme. The logo detection results obtained at the coarse level of our proposed scheme

using different dataset are shown in Table II III and IV.

4.4.5. Extraction of Shape Context Features and Classification

Shape context descriptor as a geometric invariant descriptor which has been used for the recognition

of logos, objects and patterns [27] [7]. The shape context at a reference point captures the distribution of

the remaining points relative to that reference point and provides a globally discriminative characterization.

There is another approach called ”Shapeme Histogram Descriptor”, which is inspired by shape context

descriptor and bag of visual model [27] [21]. But before going into the details of this ”Shapeme Histogram

Descriptor”, we would like to throw some light on the brief description of ”Shape Context Features”.

In the initial step, a set of points are select ed from the logos by detecting edges with the application

of canny edge detector. After the detection of edges, the edge points are sampled in order to obtain a fixed

number of n points pi per logo l. Based on these n points, the distribution of points within the plane relative

to each point of the shape can be measured. Then a histogram using log-polar coordinates counts the number

of points inside each bin. For a point pi of the shape, a histogram hi of the coordinates of the nearby points

q is computed as:

hi(k) = #{q , pi : q ∈ binpi(k)} (6)

The same experimental setup as the one mentioned in [27] has been followed in our case. We have chosen

5 bins for logr and 12 bins for θ. Shape context descriptor is translation and scale invariant. Translational

invariance comes due to the computation of histograms from reference points whereas scale invariance

comes by normalizing all the radial distances by the mean distance between all the point pair int he shape.

The rotation invariance can be given by measuring angles at each point relative to the direction of the tangent

at that point. After all the n points in a shape are described by their shape context histogram, two shapes

are matched by finding the point of correspondences. One of the simplest way to compute the matching

between two set of points is by using a bipartite graph matching approach which calculate correspondence
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between points having similar shape context descriptions. More robust level of matching can be obtained by

the computation of affine transform which matches the set of points from one shape to another shape. But

as shape context descriptor provides local description of key-points which requires a point correspondence

matching inhibits it’s applicability to the retrieval problem in large collections. To overcome this issue of

shape context descriptor, one variant is proposed which aims to describe the logos globally and is known

as ”Shapeme Histogram Descriptor”. Mori et al. [21] presented the Shapeme Histogram Descriptor which

is inspired by aforementioned shape context descriptor and bag-of-words model. The main idea of this

descriptor is to compute shape context descriptor for all the interested points extracted from a symbol and

then use vector quantization in the space of shape contexts. For fast matching, the vector quantization

involves a clustering stage of the shape context feature space. Once the clustering is computed, each shape

context descriptor can be identified by the index of the cluster in which it belongs to. These clusters are

called ”Shapemes”. Each logo is then described by a single histogram which represents the frequency of

appearance of each shapeme.

During the learning stage, the shape context descriptors can be computed and then clustering of the

space by means of K-means algorithm can be performed by using training set. The total of K cluster centers

can be obtained and these centers can be assigned to a given integer index I ∈ [1, k]. Then, during the

recognition stage, given a logo l, and it’s n sampled points obtained from it’s edge map, the shape context

descriptors (hi,∀i ∈ [0, n]) can be computed. Each shape context descriptor of the points pi is then projected

to the clustered space and can be identified by a single index Ii. Hence, the logo l can be represented by a

histogram coding of the frequency of appearance of each of the k shapeme indices. In this manner, we can

globally describe each logo by using a unique histogram SH by applying the following equation:

SH = #Ii == x : Ii ∈ [0, k] (7)

In our application, at first the RIs are ranked based on the average of Frequency Probability features,

Multi-modal Gaussian Probability features and Convex Hull based features. So the RI with the highest

rank in the ranked list of RIs has the priority for further process. Since, each document in the Tobacco-800

contains between 0 and 5 logos, five RIs are needed to be further processed in the finer-level. The shape

context feature are thus extracted for each RI to identify it as a logo or a non-logo at the fine level of the
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proposed logo detection scheme using a Nearest Neighbor Classification with a correlation distance matrix.

4.5. Results and Discussion
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