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Abstract
Matrix profile is an efficient technique for knowledge extraction from time
series, e.g., motif and anomaly detection. Several algorithms have been yet
proposed for computing it, e.g., STAMP, STOMP and SCRIMP++. All these
algorithms use the z-normalized Euclidean distance to measure the distance be-
tween subsequences. However, as we illustrate in this paper, for some datasets
the non-normalized (classical) based matrix profile is more useful. Thus, efficient
matrix profile techniques based on both z-normalized and non-normalized dis-
tances are necessary for knowledge extraction from different time series datasets.
In this paper, we propose such efficient techniques. We first propose an ef-
ficient algorithm called AAMP for computing matrix profile with the non-
normalized Euclidean distance. Then, we extend our algorithm for the p-norm
distance. We also propose two algorithms called ACAMP and ACAMP-
Optimized that use the same principle as AAMP, but for calculating matrix
profile by using z-normalized Euclidean distance. We implemented and eval-
uated the performance of our algorithms through experiments over real world
datasets. The results illustrate that AAMP is very efficient for computing ma-
trix profile for non-normalized Euclidean distances. They also illustrate that
the ACAMP-Optimized algorithm is significantly faster than the state of the
art matrix profile algorithms for the case of z-normalized Euclidean distance.

Keywords: Time series analysis; STAMP; STOMP; All-pairs-similarity search; Motifs
and discord discovery; Outliers detection; Anomaly detection; Joins
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1 Introduction
Matrix profile has been recently proposed as an efficient technique to the problem
of all-pairs-similarity search in time series [1–8]. Given a time series T and a sub-
sequence length m, the matrix profile returns for each subsequence, the distance to
the most similar subsequence in the time series. It is itself a very useful time series
for data analysis, e.g., detecting the motifs (represented by low values), or anomalies
(represented by high values), etc.

Recently, efficient algorithms have been proposed for matrix profile computation,
e.g., STAMP [1], STOMP [2] and SCRIMP++ [8]. All these algorithms use the z-
normalized Euclidean distance to measure the distance between subsequences. They
are based on a technique, named as Mueen’s Algorithm for Similarity Search (MASS)
[9] for efficient calculation of z-normalized Euclidean distance, by exploiting the
Fast Fourier Transform (FFT). The z-normalized Euclidean distance formula used in
the MASS algorithm is derived from Pearson correlation which works only for com-
puting z-normalized Euclidean distance, and makes it inappropriate for computing
classical Euclidean distance.

However, we observed that for some datasets, the non-normalized (classical) Eu-
clidean distance is more useful for knowledge discovery. In fact, in some cases the
z-normalization can remove rare and important information. As an example, consider
Fig. 1a (top), which shows two time series from the real ECG dataset. In Fig. 1a
(middle) and (bottom), we see the matrix profiles generated for the two time series by
considering z-normalized (using STOMP algorithm) and non-normalized Euclidean
(using our AAMP) distances respectively. In this example, the matrix profiles gen-
erated using the z-normalized distance loose the information about the anomalies
(marked by magenta color in Fig. 1a top.). But, the matrix profile calculated by using
non-normalized Euclidean distance can clearly highlight those anomalies.

In addition, the z-normalized Euclidean distance does not necessarily provide
the nearest neighbors (matches) of the subsequences from the same range of val-
ues. Hence, the match of a subsequence can come from completely different range
of values and in some applications these matches could be considered as irrelevant.
An example is depicted in Fig. 1b, where we show the matches for four query sub-
sequences, taken from the time series of a real sheep dataset, representing different
activities like RUNNING and WALKING (see detail of the dataset in Section 5.1.1).
It is clearly visible that our proposed AAMP algorithm that uses the non-normalized
Euclidean distance is capable of returning matches that are in the same range of
values as the query subsequences. In Fig. 1b, we only have shown few selective ex-
amples among several others, where by using non-normalized Euclidean distance,
we found better matches.

In fact, the z-normalized Euclidean distance based matrix profile is able to find
the shape-wise matches from any range of values and that’s why the shape-wise sim-
ilarity could be found irrespective of the numerical values. This is an advantage for
some applications, but a disadvantage for others (i.e., those that need the matches
from the same range). This is why, a combination of both z-normalized and non-
normalized based matrix profiles is necessary for knowledge extraction in a wide
range of applications.
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Figure 1: a) Top: example of two different time series from ECG dataset; Middle:
matrix profile generated by z-normalized Euclidean distance using STOMP algo-
rithm; Bottom: matrix profile generated by non-normalized Euclidean distance using
our AAMP algorithm. b) Top: four subsequences of length 50 from sheep dataset;
Middle: the nearest neighbors obtained by STOMP; Bottom: the nearest neighbors
obtained by AAMP are in the same range as the queries, while the results obtained
by STOMP are in very different ranges.
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In this paper, we provide efficient techniques for the calculation of matrix pro-
file for both z-normalized and non-normalized distances. Our contributions are as
following:

• We propose an efficient algorithm called AAMP for computing matrix profile with
the non-normalized Euclidean distance. AAMP is executed in a set of iterations,
such that in each iteration the distance of subsequences is incrementally computed.
We also extend AAMP to compute matrix profile for the p-norm distance that is
more general than the Euclidean distance which is actually a 2-norm distance.

• We propose an algorithm called ACAMP that uses the same principle as AAMP
but for the z-normalized Euclidean distance. In ACAMP, we use an incremental
formula for computing the z-normalized distance that is based on some variables,
calculated incrementally in a sliding window that moves over the subsequences of
the time series. We also propose an improved version of the ACAMP algorithm,
called ACAMP-optimized, that is significantly faster than ACAMP.

• We implemented our algorithms and compared them with the state of the art al-
gorithms on matrix profile, i.e., STOMP, SCRIMP and SCRIMP++, using several
real world datasets. The results show excellent performance gains. They show that
AAMP and ACAMP-optimized are significantly faster than the state-of-the-art
algorithms for matrix profile computation. They also illustrate the utility of de-
tecting discords/outliers in datasets by using AAMP based on the non-normalized
Euclidean distance over STOMP, SCRIMP and SCRIMP++ that are based on the
z-normalized Euclidean distance.

It is worth mentioning that our algorithms, i.e., AAMP and ACAMP, are exact,
anytime and incrementally maintainable. They take a deterministic execution time
that only depends on the time series and subsequence length.

The rest of this paper is organized as follows. In Section 2, we give the problem
definition. In Section 3, we describe our AAMP algorithm for computing matrix pro-
file with non-normalized Euclidean and p-norm distances. In Section 4, we propose
the ACAMP algorithm for z-normalized distance. Section 5 presents the experimental
results. Section 6 discusses related work and Section 7 concludes the article.

2 Problem Definition
In this section, we give the formal definition of the matrix profile, and describe the
problem which we address in this article.

Definition 2.1. A time series T is a sequence of real-valued numbers T =
⟨t1, . . . , tn⟩ where n is the length of T .

A subsequence of a time series is defined as follows.

Definition 2.2. Let m be a given integer value such that 1 ≤ m ≤ n. A subsequence
Ti,m of a time series T is a continuous sequence of values in T of length m, starting
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from position i. Formally, Ti,m = ⟨ti, . . . , ti+m−1⟩ where 1 ≤ i ≤ n −m + 1. We
denote i as the start position of Ti,m subsequence.

For each subsequence of a time series, we can compute its distance to all sub-
sequences of the same length in the same time series. This is called a distance
profile.

Definition 2.3. Given a query subsequence Ti,m, a distance profile Di of Ti,m in
the time series T is a vector of the distances between Ti,m and each subsequence of
length m in time series T . Formally, Di = ⟨di,1, . . . , di,n−m+1⟩, where di,j is the
distance between Ti,m and Tj,m.

Note that the term distance in Definition 2.3 does not refer to the mathemati-
cal definition of distance. It only gives a measure on the difference between two
subsequences. For instance the z-normalized Euclidean distance does not satisfy the
(mathematical) axioms of a distance. A matrix profile is a vector that represents the
minimum distance between each subsequence and all other subsequences of a time
series T .

Definition 2.4. Given a subsequence length m, the matrix profile of a time series T
is a vector P = ⟨p1, . . . , pn−m+1⟩ such that pi is the minimum distance between the
subsequence Ti,m and all other subsequence of T , for 1 < i < n −m + 1. In other
words, pi = min(Di), i.e., pi is the minimum value in the distance profile of Ti,m.

We are interested in the efficient computation of matrix profile using following
three different distance measures: 1) Euclidean distance; 2) p-norm distance that is a
generalization of Euclidean distance; 3) z-normalized Euclidean distance.

Definition 2.5. The Euclidean distance between two subsequences Ti,m and Tj,m is
defined as:

Di,j =

√√√√m−1∑
l=0

(ti+l − tj+l)2 (1)

In this paper, sometimes we call the Euclidean distance as non-normalized
(classical) Euclidean distance.

Definition 2.6. Let p > 1 be a positive integer, then the p-norm distance between
two subsequences Ti,m and Tj,m is defined as:

DPi,j =
p

√√√√m−1∑
l=0

(ti+l − tj+l)p (2)

The z-normalized Euclidean distance between two subsequences is defined as
follows.
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Definition 2.7. Let µi and µj be the mean of the values in two subsequences Ti,m

and Tj,m respectively. Also, let σi and σj be the standard deviation of the values in
Ti,m and Tj,m respectively. Then, the z-normalized Euclidean distance between Ti,m

and Tj,m is defined as:

DZi,j =

√√√√m−1∑
l=0

(
ti+l − µi

σi
− tj+l − µj

σj

)2

(3)

A shapelet is a subsequences that can maximally represent the class of a time
series. The matrix profile can be used for shapelet detection (see Section SM: II.5).
Let us define the joint matrix profile of two time series that is needed for explaining
the shapelet discovery using matrix profile.

Definition 2.8. Let m be the subsequence length, and A and B be two time series of
length n. The joint matrix profile of A with B is a vector PAB = ⟨p1, . . . , pn−m+1⟩
such that pi is the minimum distance between the subsequence Ai,m and all
subsequence of time series B.

3 AAMP
In this section, we propose the AAMP algorithm for computing matrix profile by
using the Euclidean distance. At first, we present the formula for incremental com-
putation of the Euclidean distance and then propose the AAMP algorithm which uses
this formula for computing matrix profile.

3.1 Incremental Computation of Euclidean Distance
Here, we present a formula that allows us to compute the Euclidean distance between
two subsequences Ti,m and Tj,m based on the Euclidean distance of subsequences
Ti−1,m and Tj−1,m. The formula is presented by the following lemma.

Lemma 1. Let Di,j be the Euclidean distance between two subsequences Ti,m and
Tj,m. Let Di−1,j−1 be the Euclidean distance between two subsequences Ti−1,m and
Tj−1,m. Then Di,j can be computed as:

Di,j =
√

D2
i−1,j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2 (4)

Proof. Let Ti,m = ⟨ti, ti+1, . . . , ti+m−1⟩ and
Tj,m = ⟨tj , tj+1, . . . , tj+m−1⟩. Then the square of the Euclidean distance between
Ti,m and Tj,m is computed as:

D2
i,j =

m−1∑
l=0

(ti+l − tj+l)
2 (5)



Springer Nature 2021 LATEX template

Article Title 7

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 

 

 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 
 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 

SW1 

Iteration 1 

SW2 

Iteration 2 

SW3 

Iteration 3 

SW4 

Iteration 4 

SW2 

Iteration 2 

SW1 

Iteration 1 

SW3 

Iteration 3 

SW2 SW1 SW3 

Iteration 1 Iteration 2 Iteration 3 

Diagonal Shift 1 

Diagonal Shift 2 

(a)

SSq 1 SSq 2 SSq 3 SSq 4 SSq 5 SSq 6 SSq 7

SSq 1 1 2 3 4 5 6

SSq 2 1 1 2 3 4 5

SSq 3 2 1 1 2 3 4

SSq 4 3 2 1 1 2 3

SSq 5 4 3 2 1 1 2

SSq 6 5 4 3 2 1 1

SSq 7 6 5 4 3 2 1

        SSq = Sub-Sequence

(b)

Figure 2: a) Example of AAMP execution on a time series of length n = 10, and
with subsequence length m = 4. The total number of subsequences is n−m+ 1 =
10 − 4 + 1 = 7. In iteration k, the distances between the subsequences that are
k positions apart from each other are computed. The first distance in each iteration
is computed using the normal Euclidean distance function in O(m), and the other
distances are computed incrementally in a constant time. b) The subsequences are
arranged in a matrix to better understand the functioning of AAMP algorithm. By
looking at the cells of the matrix, we can see in which iteration, the distance of two
subsequences is calculated. Different iterations are represented by different colors.

And the square of the Euclidean distance between Ti−1,m and Tj−1,m is:

D2
i−1,j−1 =

m−1∑
l=0

(ti−1+l − tj−1+l)
2 (6)

By comparing Equations (5) and (6), we have:

D2
i,j = D2

i−1,j−1 − (ti−1 − tj−1)
2 + (ti+m−1 − tj+m−1)

2 (7)
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Thus, we have:

Di,j =
√

D2
i−1,j−1 − (ti−1 − tj−1)2 + (ti+m−1 − tj+m−1)2 (8)

By using the above equation, we can compute the Euclidean distance Di,j by using
the distance Di−1,j−1 in O(1).

3.2 Algorithm
The main idea behind AAMP is that for computing the distance between subse-
quences, it uses diagonal sliding windows, such that in each sliding window, the
Euclidean distance is computed only between the subsequences that have a precise
difference in their starting positions. These sliding windows allow us to use Equation
(4) for efficient distance computation.

Algorithm 1 shows the pseudo-code of AAMP (for now, ignore the violet colored
lines). Initially, the algorithm sets all values of the matrix profile array to infinity (i.e.,
maximum distance) and the matrix profile index array to 1. Then, it performs n−m
iterations using a variable k (1 ≤ k ≤ n −m). In each iteration of k, the algorithm
calculates distance between ith subsequence (i.e. Ti,m) and the subsequence which
is k positions apart from it, i.e., Ti+k,m+k. The value of i is primarily taken as 1 then
it iterates from 2 to n−m+ 1− k values in Line 13.

In each iteration k, AAMP firstly computes the Euclidean distance of the 1st sub-
sequence of the time series, i.e., T1:m, with the one that starts at k positions from
it, i.e. subsequence Tk+1:m+k The first distance computation is done using the clas-
sical formula of Euclidean distance, i.e. using Equation (1) (see Line 6). Then, in a
sliding window, the algorithm incrementally computes the distance of other subse-
quences with the subsequences that are k position apart from them (i.e. 2nd with 3rd

subsequence, 3rd with 4th subsequence etc.), and this is done in O(1) time. If the
computed distance is smaller than the existing distance value in the matrix profile
array P , then the smaller distance is saved in the matrix profile along with it’s in-
dex (see Lines 7− 12 and 15− 20). Note that, we use the property that the distance
between ith and jth subsequences is equal to the distance between jth and ith sub-
sequences; i.e. disti,j = distj,i (see Lines 8 − 9 & 11 − 12; and Lines 16 − 17 &
19− 20). In AAMP, we use square of the Euclidean distances for comparing the dis-
tances of different subsequences (see Lines 6 and 14), and at the end of the algorithm,
square of these distances is replaced by taking the sqrt to obtain the real distances
in the matrix profile (see Line 22). This reduces the number of sqrt operations done
during the execution of the algorithm.

Example 1. Figure 2a shows an example of executing AAMP over a time series
of length n = 10 and for subsequences of length m = 4. In iteration 1, the first
Euclidean distance is calculated between T1,m and T2,m and the sliding window
SW1. Then the sliding window moves to the next subsequences (i.e. sliding window
SW2), and incrementally computes the distance between T2,m and T3,m by using the
Equation (4) in O(1) time. Then, the sliding window moves to the next subsequences
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Algorithm 1: AAMP algorithm: matrix profile with Euclidean distance
Input: T : time series; n: length of time series; m: subsequence length
Output: P : Matrix profile; I: Matrix profile Indexes;

1 begin
2 for i=1 to n-m+1 do
3 P[i] =∞ {initialize the matrix profile }
4 I[i] = 1 {initialize the matrix profile indexes }
5 for k=1 to n-m do
6 dist = Euc Distance(T1:m, Tk+1:m+k)

2 {compute square of the
distance between 1st i.e. T1:m and (k+1)th i.e. Tk+1:m+k subsequences }

7 if dist < P [1] then
8 P [1] = dist
9 I[1] = k + 1;

10 if dist < P [k + 1] then
11 P [k + 1] = dist
12 I[k + 1] = 1

// if k + 1 == n−m+ 1 then
// B[1] = dist {if we are computing the distance between 1st and last

sub-sequence }
13 for i=2 to (n−m+ 1− k) do
14 dist = (dist− (ti−1 − ti−1+k)

2 + (ti+m−1 − ti+m+k−1)
2

15 if dist < P [i] then
16 P [i] = dist
17 I[i] = k + i

18 if dist < P [i+ k] then
19 P [i+ k] = dist
20 I[i+ k] = i

// if i+ k == n−m+ 1 then
// B[1, 1] = dist {if we are computing the distance with last

sub-sequence }

21 for i=1 to n-m+1 do
22 P [i] =

√
P [i]

and computes their distances, i.e., T3,m and T4,m. This distances computation pro-
cess continues for all the subsequence pairs, which are 1 element/index apart from
each other’s starting positions. For iteration 1, the distances computed between all
the subsequence pairs are marked by yellow color in the matrix shown in Fig. 2b.

In iteration 2, the Euclidean distance is computed between each subsequence
and the one which is 2 elements/indexes apart (follow the bottom image in Fig. 2a).
Thus, we calculate the distances between subsequence 1 & 3 followed by the dis-
tance between subsequence 2 and 4 etc. (shown by black colored cells in the matrix
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of Fig. 2b). Note that, in each iteration the first distance is computed using the clas-
sical Euclidean distance formula and the other distances are computed by using the
incremental formula.

By looking at the cells of the matrix in Fig. 2b, we can see in which iteration,
the distance of two subsequences is calculated. Different iterations are represented
by different colors.

3.3 Complexity Analysis
The AAMP algorithm contains two loops. In the 1st loop (Line 6), the distance be-
tween T1,m and Tk,m is computed by using the normal Euclidean distance function
in O(m) time, thus in total, Line 6 is executed in O(m× (n−m)). In the nested loop
(Lines 13− 20), all operations are done in O(1), so in total these operations are done
in O((n−m)2). Thus, the time complexity is O((n−m)2)+m× (n−m)) which is
equivalent of O(n× (n−m)). If n >> m, then the time complexity of AAMP can
be written as O(n2). But, if m is very close to n, i.e., m = n− c for any small con-
stant c, then the time complexity is O(n). The space needed for our algorithm is only
the array of matrix profile and some simple variables. Thus, the space complexity is
O(n).

3.4 Extension of AAMP to p-Norm Distance
In this section, we extend the AAMP algorithm to the p-norm distance that is a more
general form of distance computation than Euclidean distance formula. The p-norm
functions are used in Lebesgue spaces (LP ), which are useful in data analysis in
physics, statistics, finance, engineering, etc.

Let Ti,m and Tj,m be two time series subsequences, then their p-norm distance
(for p > 1) is defined as:

DPi,j =
p

√√√√m−1∑
l=0

(ti+l − tj+l)p (9)

Notice that the Euclidean distance is a special case of p-norm with p = 2. The
following lemma gives an incremental formula for computing PNORMi,j .

Lemma 2. Let DPi,j be the p-norm distance of subsequences Ti,m and Tj,m. Then,
DPi,j can be computed by using the p-norm distance of subsequences Ti−1,m and
Tj−1,m, denoted by DPi−1,j−1, as:

DPi,j =
p
√

(DPi−1,j−1)p − (ti−1 − tj−1)p + (ti+m−1 − tj+m−1)p

Proof. The proof can be easily done in a similar way as that of Lemma 1. Using
Lemma 2, we can modify the AAMP algorithm to compute the matrix profile with
the p-norm distance. This can be done just by modifying two lines in Algorithm 1:
i) in Line 6 we replace the Euclidean distance with p-norm distance between the
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subsequences; i.e. T1,m and Tk,m; ii) in Line 14, we incrementally compute the p-
norm distance using Lemma 2.

The time and space complexity of the AAMP algorithm for p-norm is the same
as that of AAMP with the Euclidean distance.

4 ACAMP: Matrix Profile for Z-Normalized Euclidean
Distance

In this section, we propose an algorithm, called ACAMP, that computes matrix pro-
file based on the z-normalized Euclidean distance and using the similar principle as
AAMP, i.e., incremental distance computation by using diagonal sliding windows.

4.1 Incremental Computation of Z-Normalized Euclidean
Distance

Let us now explain how ACAMP computes the z-normalized Euclidean distance in-
crementally. Let Ti,m = ⟨ti, . . . , ti+m−1⟩ and Tj,m = ⟨tj , . . . , tj+m−1⟩ be two
subsequences of a time series T . In ACAMP, we compute the z-normalized Euclidean
distance between Ti,m and Tj,m by using the following five variables:

• Ai =
∑m−1

l=0 ti+l: the sum of the values in Ti,m;
• Bj =

∑m−1
l=0 tj+l: the sum of the values in Tj,m;

• Ai =
∑m−1

l=0 t2i+l: the sum of the square of values in Ti,m;
• Bj =

∑m−1
l=0 t2j+l: the sum of the square of values in Tj,m;

• Ci,j =
∑m−1

l=0 ti+l × tj+l: the product of values of Ti,m and Tj,m.

Note that all above variables can be computed incrementally, when moving a
sliding window from Ti,m to Ti+1,m. Given these variables, the z-normalized Eu-
clidean distance between two subsequences Ti,m and Tj,m can be computed using
the formula given by the following lemma.

Lemma 3. Let DZi,j be the z-normalized distance of subsequences Ti,m and Tj,m.
Then, DZi,j can be computed as:

DZi,j =

√√√√√2m

1−
Ci,j − 1

mAiBj√(
Ai − 1

mA2
i

) (
Bj − 1

mB2
j

)
 (10)

The proof of Lemma 3 can be seen in Section SM: I.1 of the Supplementary
Materials.

4.2 Algorithm
The pseudo-code of ACAMP is shown in Algorithm 2. In Line 4 in a loop, k is iter-
ated from 1 to n − m, and in each iteration the z-normalized Euclidean distance is
calculated between the subsequences which are k points far from each other in the
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Algorithm 2: ACAMP algorithm: matrix profile calculation with z-
normalized Euclidean distance

Input: T: time series; n: length of time series; m: subsequence length
Output: P: Matrix profile; I: Matrix profile Indexes;

1 begin
2 for i=1 to n-m+1 do
3 P[i] =∞; I[i] = 1

4 for k=1 to n-m do
5 A =

∑m−1
l=0 t1+l {sum of the values in T1,m }

6 B =
∑m−1

l=0 t1+k+l {sum of the values in T1+k,m }
7 A =

∑m−1
l=0 t21+l {sum of the square of values in T1,m }

8 B =
∑m−1

l=0 t21+k+l {sum of the square of values in T1+k,m }
9 C =

∑m−1
l=0 t1+ltk+l {product of values of T1,m and T1+k,m }

10 dist = 2m

(
1− C− 1

mAB√
(A− 1

mA2)(B− 1
mB2)

)
{compute the square of

z-normalized distance }
11 if dist < P [1] then
12 P [1] = dist; I[1] = k + 1;

13 if dist < P [k + 1] then
14 P [k + 1] = dist; I[k + 1] = 1

15 for i=2 to n−m+ 1− k do
16 A = A− ti−1 + ti+m−1;
17 B = B − ti−1+k + ti+m+k−1;
18 A = A− t2i−1 + t2i+m−1;
19 B = B− t2i−1+k + t2i+m+k−1;
20 C = C− ti−1 × ti−1+k + ti+m−1 × ti+m+k−1;

21 dist = 2m

(
1− C− 1

mAB√
(A− 1

mA2)(B− 1
mB2)

)
22 if dist < P [i] then
23 P [i] = dist; I[i] = k + i

24 if dist < P [i+ k] then
25 P [k + i] = dist; I[k + i] = i

26 for i=1 to n do
27 P [i] =

√
P [i] {compute the z-normalized distance from its square }

time series (Lines 5 to 14). In each iteration, the distances are computed by using
the formula of Equation 10 that uses the five variables i.e., A, B, A, B and C. For
each iteration of k, the distance between two initial subsequence is calculated (i.e.
the distance between T1,m and T1+k,m), by using the five variables in O(m) time
(see Lines 5 to 10). For the other subsequences, these variables and the distance are
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incrementally computed in O(1) time. Note that in the algorithm, for performance
reasons we compare the square of the z-normalized Euclidean distance of the subse-
quences (Line 10 and 21). At the end of the algorithm (Lines 26 to 27), in a loop we
convert the square distances to the real distances.

The time and space complexity of ACAMP algorithm is same as that of of AAMP
algorithm, described in Section 3.3.

4.3 More Optimization of ACAMP
In the following section, we propose several optimizations for the ACAMP Algo-
rithm.

One possible optimization is to move the first calculation of variables A, A, B,
and B (actually done in Lines 7 to 10) before the loop (i.e., before Line 4). By doing
this, firstly, we can avoid the redundant computation of A & A and B and B. Then
the calculation of distance between the 1st and all other subsequences can be pre-
computed. Hence, we would just need to incrementally update these variables in the
loop (Lines 16− 20).

We can further optimize ACAMP by not comparing the square of z-normalized
distance in Lines 15, 17, 26 and 28 in Algorithm 2, but by comparing Fi,j defined as
follows:

Fi,j =
(AiBj −mCi,j)× |AiBj −mCi,j|

(Ai − 1
mA2

i )(Bj − 1
mBj)

, (11)

We can easily show that DZi,j > DZi,k if and only if Fi,j > Fi,k. In the formula of
Fi,j , there is no square root operation, and its computation takes less time than that
of DZi,j . Thus, for comparing the z-normalized Euclidean distance of subsequences,
we can simply compare their Fi,j . Then in Line 21 of the algorithm, the following
equation can be used for computing the z-normalized Euclidean distance DZi,j from
Fi,j :

DZi,j = 2m+ 2× sign(Fi,j)×
√
|Fi,j | (12)

4.4 AAMP for streaming data
After discussing about offline version of AAMP algorithm, here in this section we
will talk about AAMP algorithm for streaming data. The original concept of matrix
profile on streaming data is proposed by Yeh et.al [10]. We apply the similar idea on
AAMP to handle real time streaming data.

In some situations, it is needed to build the matrix profile incrementally based
on the feed of real-time data. It is highly useful to continuously upgrade the matrix
profile for new data by adjusting the existing matrix profile. In Algorithm 3, we have
illustrated the proposed approach to handle streaming data. In case of streaming algo-
rithm, it is considered that the data points arrives one-by-one in a sequential manner.
This algorithm is made on the foundation of Algorithm 1 which is designed to work
in sequential order.
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Algorithm 3: STREAMING AAMP(T , t, m, PT , IT ,B)
Input: T ; new data point (t); m; calculated matrix profile (P ); associated

index profile (I); dot product vector (C)
Output: The updated matrix profile (Pnew); updated index profile Inew

corresponding to incremented time series (T stream = [T, t]);
IdxsT ← (n−m+ 1); T ← [T, t]; Z← m

2
P ← [P, 0]; I ← [I, 0]
nSq ← T [(IdxsT + 1) : (n+ 1)]
dist = Euc Distance(T1:m, nSq)
if dist < P [1] then

P [1] = dist
I[1] = k + 1;

if dist < P [k + 1] then
P [k + 1] = dist
I[k + 1] = 1

B[1] = dist
for i=2 to IdxT do

dist = B[i]− (T [i− 1]− T [IdxT ])
2 + (T [i+m− 1]− T [IdxT +m+])2

G← IdxT + 1− i {gap between subsequences}
if G > Z then

Flag = True

if dist < P [i] & Flag == True then
P [i] = dist
I[i] = IdxsT + 1

if dist < P [IdxsT + 1] & Flag == True then
P [IdxsT + 1] = dist
I[IdxsT + 1] = i

B[1, i] = dist

21 for i=1 to IdxsT do
22 P [i] =

√
P [i]

return PT , IT , B

5 Performance Evaluation
In this section, we compare the execution time of our algorithms AAMP and ACAMP
with the state-of-the-art matrix profile algorithms STOMP, SCRIMP and SCRIMP++
[8]. We also evaluate the optimized version of ACAMP (using the optimizations pro-
posed in Section 4.3) called as ACAMP-Optimized. We first describe the experimental
setup, the datasets used for the performance evaluation and then present the results
of the experiments.
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Figure 3: The execution times of six algorithms with increasing the subsequence
length (m): a) Execution time of the six algorithms on a time series of length 68000
(protein dataset). b) Execution time of the six algorithms on a time series of length
50000 (sheep dataset). The execution time of six algorithms are plotted with the in-
crease of time series length (n): c) Execution time of the six algorithms on variable
time series length (protein dataset) with m = 256. d) execution time of the six algo-
rithms on variable time series length (sheep dataset) with m = 256.

5.1 Setup
We implemented our algorithms in MATLAB 1. For STOMP2 3, SCRIMP4 and
Scrimp++4, we used the Matlab code available from [11] using the step size of
PreSCRIMP = 0.25. The evaluation and tests were carried out on a off-the-shelf
computer with Intel ®Core(TM) ™i7-8850H CPU @ 2.60 GHz ×8 processors, on
Ubuntu 18.04 LTS and 32 GB RAM with the R2019A version of Matlab.

5.1.1 Datasets

The first dataset corresponds to spectrums of 680 dimensions, representing a protein
rate measured on 10 different products: rapeseed (CLZ), corn gluten (CNG), sun

1Our code and data are accessible at: https://sites.google.com/view/aamp-and-acamp/home
2https://sites.google.com/view/mstamp/
3https://www.cs.ucr.edu/∼eamonn/MatrixProfile.html
4https://sites.google.com/site/scrimpplusplus/

https://sites.google.com/view/aamp-and-acamp/home
https://sites.google.com/view/mstamp/
https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://sites.google.com/site/scrimpplusplus/
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flower seed (SFG), grass silage (EHH), full fat soya (FFS), wheat (FRG), sun flower
seed (SFG), animal feed (ANF), soyameal set(representsr and whey (MPW). The
complete dataset represents 4075 time series of 680 values (680 elements per time
series).

The second real world dataset corresponds to time series of 500 dimensions which
have been measured by attaching accelerometer at the neck of some sheep. Acelerom-
eters captured 3-axial acceleration at a constant rate of 100Hz. The complete dataset
represents 8532 time series of 500 values.

5.2 Execution time
The first experiment on execution time is performed by keeping the time series length
(n) fixed, and varying the subsequence length (m; plotted along X−axis). For this
experiment, we used the protein and sheep datasets. For the protein dataset, we have
used the first 100 time series and concatenated them to generate a single time series
of 68000 (100 × 680) elements. In the case of the sheep dataset, we took the first
100 time series and concatenated them to generate a single time series of 50000
(100× 500) elements).

The execution times of the six algorithms are plotted in Fig. 3a and 3b using the
protein and sheep datasets respectively. As seen, the execution time of all algorithms
decreases with increasing subsequence length (m). On both databases, AAMP and
ACAMP-Optimized outperform other algorithms. Until m = 8000, ACAMP is better
than STOMP, but for higher values STOMP behaves better. For very high values of
m (e.g., when m is close to n), the execution time of all algorithms gets almost the
same, because in these cases there are few subsequences in the time series. Notice
that in practice the subsequence size is not very high (e.g., less than 4000), and in
these cases the performance of AAMP and ACAMP-Optimized is significantly better
than the state-of-the-art algorithms.

The second experiment is performed by keeping a fixed subsequence length
m = 256 (in accordance with the experiments in related work, e.g. [1] and [2]), and
varying the length of time series, i.e., n. The results for the two datasets are shown
in Fig.3c and 3d. We observe that the execution time of all algorithms increases
linearly with the increase of time series length. AAMP and ACAMP-Optimized algo-
rithms outperform the state-of-the-art algorithms, and their performance difference
increases significantly by increasing n. Thus, the bigger is the time series, the higher
is the performance gain of our AAMP and ACAMP-Optimized algorithms.

5.3 Discord discovery
The AAMP and ACAMP algorithms are capable to detect the discords (anomalies)
from the time series like other matrix profile based algorithms such as STOMP,
SCRIMP and SCRIMP++. The matrix profile generated by ACAMP is exactly the
same as the one generated by STOMP, SCRIMP and SCRIMP++, as all of these tech-
niques use the z-normalized Euclidean distance. But, AAMP uses non-normalized
Euclidean distance, thus the detected discords can be different. Hence, depending
on the user requirements and the domains of applications, the techniques from both
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groups can be useful. An example is shown in Fig. 4a by using two real ECG datasets
[2]. The visible discords (of subsequence length 50) are marked by red color in
these time series. It can be seen that the anomaly or unusual pattern existing in
the first time series can be detected by AAMP, whereas SCRIMP++ (or any of the
other z-normalized based algorithm) was unable to detect it. The reason is due to z-
normalization by SCRIMP++. AAMP is able to take into account the range of values
of the matches with respect to the range of values of the given subsequence. This is
why AAMP does not find a close match for this unusual subsequence (it’s range of
values is mostly less than −2). In the second time series (top right image in Fig. 4a)
another similar situation is presented where AAMP was able to correctly detect the
discord but SCRIMP++ failed to locate it.

 

  

 

 

 

 

 

 

  

  

 

 

 

 

 

 

 

  

AAMP Matrix Profile  AAMP Matrix Profile  

SCRIMP++ Matrix Profile  SCRIMP++ Matrix Profile  

Time Series Data Time Series Data 

Discord Sub-sequence  

Discord Sub-sequence  

(a)

Figure 4: (a) Top: two time series from real ECG dataset. The visible discords in
these time series are marked by red color. Middle: the matrix profile, obtained by
SCRIMP++ algorithm; Bottom: The matrix profile, obtained by AAMP algorithm.

5.3.1 Detection of discords in the UCR repository

To show the performance of non-normalized MP algorithm i.e. AAMP over z-
normalized MP techniques e.g. STOMP, we have also done experiments on 51
real world datasets from the UCR Time Series Classification Archive [12]. There
are in total 128 dataset exists in this repository. Each dataset in UCR repository.
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Figure 5: (a) Top: the longitude and height time series of Seismic dataset (outliers
are marked by red color); Bottom: the matrix profile obtained by AAMP algorithm.

Each of the datasets comes in two parts, a TRAIN partition and a TEST parti-
tion. For example, for the “Fungi” dataset, we have two files, “Fungi TEST.tsv” and
“Fungi TRAIN.tsv”. There is one time series exemplar per row. The first value in the
row is the class label (an integer between 1 and the number of classes). The rest of
the row are the data sample values. The order of time series exemplar carry no special
meaning and is in most cases random.

For our experiment, we merged the TRAIN and TEST partitions (let’s call this
merged time series set as M) and then randomly selected 30 time series exemplar
from each dataset (let’s call them “query time series”). Hence, we perform our exper-
iment with a total of 51×30 = 1530 query time series. Now for in each iteration, we
exclude pth(1 ≤ p ≤ 30) query time series fromM. Then, we sequentially concate-
nate these |M|−1 number of time series to generate a single big time series. Let’s
assume that each time series inM has t number of elements. Then the concatenated
time series will contain |M|×t number of elements. Each query time series is refined
by first locating the presence of unreal numbers e.g. ±∞, NAN values and then re-
placing them by interpolating, using the remaining values in the time series. Now, we
compute the MP of the query time series with respect to the concatenated big time
series by performing AB-join. Where the query time series is considered as “A” and
concatenated big time series is considered as “B”. This operation signifies that for
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(a) (b)

(c) (d)

(e) (f)

Figure 6: (a) (b) (c) Time series from CinCECGTorso dataset. (d) (e) (f) Time se-
ries from EOGVerticalSignal dataset. Top: The original time series and the visible
discord in it. Middle: the matrix profile, obtained by STOMP algorithm; Bottom:
The matrix profile, obtained by AAMP algorithm.

each sub-sequence in query time series (i.e. A), we compute the distance of it’s near-
est match from the concatenated time series (i.e. B). From this repository, only those
datasets are chosen which follows the following two criteria :
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(a) (b)

(c) (d)

(e) (f)

Figure 7: (a, b, c) Top: Time series from InlineSkate dataset. The discord is visible
in it. Middle: the matrix profile, obtained by STOMP algorithm; Bottom: The ma-
trix profile, obtained by AAMP algorithm. (d) Time series from EOGVerticalSignal
dataset (e, f) Time series from PigAirwayPressure dataset
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i. The length of all the time series within a dataset is equal. Only those datasets are
chosen where the length of the time series (n) is greater than 2 ×m; where m
represents the given length of the sub-sequence.

ii. Total number of sub-sequences (n − m + 1) available in a time series of the
dataset should be greater than 2×m.

By empirically setting m = 128, we obtain the 51 datasets for our experiment out of
128 dataset, exists in the UCR repository.

Figure 6 and 7 shows examples of time series from different UCR datasets, and
the matrix profiles generated by AAMP and STOMP algorithms for the time series.
In each time series there is a visible anomaly (an unusual pattern), which is clearly
detected by the AAMP algorithm, i.e., as high value point in the matrix profile. But, in
the matrix profile generated by the STOMP algorithm, the anomalies are not visible
or hardly distinguishable from other subsequences.

5.3.2 Case study: Yahoo anomaly detection dataset

In this section, we show some interesting illustrations to depict the usefulness of
the proposed “AAMP” algorithm, using the Yahoo time series dataset that includes
labeled anomalies[13]. This dataset contains several files (around 370), among them
one part is coming from real data (around 95), which is based on production traffic in
some Yahoo services, whereas the other part contains synthetic (i.e., simulated) data.
The anomalies in the simulated data were algorithmically generated, and those in
the real-traffic data were manually labeled by Yahoo experts. The dataset is divided
in 4 benchmarks, which are named as: “A1Benchmark-Real” (has 67 time series),
“A2Benchmark-Synthetic” (has 100 time series), “A3Benchmark-Synthetic” (has 100
time series) and “A4Benchmark-Synthetic” (has 100 time series). In the following
figures, we have demonstrated several examples where classical euclidean distance
based “AAMP” algorithm has outperformed the z-normalization based “STOMP”
technique. We have shown several interesting examples in the following Fig. 8, Fig. 9,
Fig.11 and Fig. 10. These figures are organized in the following manner:

i. Individual interesting time series are shown along row wise
ii. The sub-sequence length (m) equals to 32, 64 and 128 are shown column-wise

There are instances where AAMP has outperformed the STOMP algorithm. There
are also examples when both the AAMP and STOMP has equally performed well.
In addition to that, we can also see few examples where due the presence of multi-
ple very similar outlier patterns, the STOMP has wrongly considered them as motifs
(i.e. has shown low distance values in MP plots) but the AAMP could correctly iden-
tify them. Lastly, for the fair comparison, we have also shown few examples where
STOMP has outperformed AAMP algorithm. By considering all these diverse visual
examples, we have categorized them into the following categories:

i. AAMP has outperformed STOMP
ii. Both the STOMP and AAMP has performed well

iii. Discords are wrongly detected as motifs by MP algorithms
iv. STOMP has outperformed AAMP

In Fig. 8, we show two examples where AAMP has successfully detected the
existing outlier, compared to STOMP for m = 32, m = 64 and m = 128. In Fig. 9,
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it can be seen that STOMP has wrongly identified the two outliers pattern as motifs
but the proposed AAMP algorithm could correctly detect them as outliers.

Furthermore, in Fig. 11, we show two examples where the STOMP and AAMP
has almost equally performed to detect the existing outliers in the time series. In
addition to that, in Fig. 10, as a fair comparison, we also show few examples where
the z-normalization based STOMP has outperformed AAMP to detect the existing
outliers in the time series. If we observe carefully, then we can see that these outlier
spikes (or their corresponding subsequences) look very similar to each other. Hence,
the 1NN of these anomalies is a close match with other similar anomaly. Due to the
z-normalization property of STOMP, it prioritize the shape-wise pattern matching
without taking into account the range of values (along y axis), it fails to identify these
anomalies as outliers. Whereas, AAMP takes into account the shape of the pattern
along with the it’s range of values (along y axis). That’s why it could successfully
identify these anomalies. For more details, see section 5.4.

5.3.2.1 Accuracy computation of AAMP v/s STOMP algorithms
In this section, we have computed the statistical accuracy of AAMP and STOMP
algorithms by using all the 4 labeled benchmarks from the Yahoo dataset. In this
experiment, first of all, we generate the MP by using AAMP and STOMP algorithms.
Then, we consider a subsequence as a discord if its value in the matrix profile is
higher than a predefined threshold.

Table 1: The outlier detection accuracy of AAMP and STOMP algorithms on the
Yahoo dataset (“A1Benchmark-Real”) based on 3 highest thresholds

Accuracies for m = 32
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.317 0.413 0.469
AAMP 0.618 0.639 0.658

Accuracies for m = 64
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.362 0.484 0.581
AAMP 0.637 0.658 0.687

Accuracies for m = 128
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.502 0.650 0.768
AAMP 0.725 0.766 0.774

Accuracies for m = 256
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.639 0.805 0.865
AAMP 0.808 0.847 0.878
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Table 2: The outlier detection accuracy of AAMP and STOMP algorithms on the
Yahoo dataset (“A2Benchmark-Synthetic”) based on 3 highest thresholds

Accuracies for m = 32
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.374 0.512 0.648
AAMP 0.771 0.838 0.850

Accuracies for m = 64
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.583 0.704 0.769
AAMP 0.830 0.903 0.931

Accuracies for m = 128
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.876 0.953 0.973
AAMP 0.785 0.855 0.922

Accuracies for m = 256
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.955 0.971 0.982
AAMP 0.920 0.963 0.977

To automatically calculate the threshold for the detection of discords, we adopt a
simple way by taking 95%, 90% and 85% of the maximum value of MP, computed by
AAMP and STOMP respectively. In this manner, for each time series, we can obtain
3 individual thresholds and based on these 3 threshold values, we have detected the
discords from the MP.

Now, to compute the accuracy, for each labeled outlier, we look within a hori-
zontal window of size 2m to find any occurrence of the outlier among the detected
discords in each of the MP, where m (= 32) represents the subsequence length, used
for MP computation. For example, let’s say in any particular time series T , there is a
labeled outlier in the ground truth at the lth location. Now, we look within the range
of [(l − m) to (l + m)] positions in the MP to find the existence of any detected
(based on the chosen threshold) discords. If we find a discord within this range, then
we consider it as a success, otherwise it is considered as failure in detection. Sim-
ply speaking, for each labeled anomaly, we consider it as detected, if its subsequence
overlaps with one of the detected discords in the matrix profile. Thus, the accuracy
of anomaly detection by a matrix profile is measured as the fraction of detected
anomalies over the total number of anomalies. In this manner, we have computed the
average accuracies of outlier detection over Yahoo time series.

Tables 1 and 2 show the accuracies by AAMP and STOMP algorithms for differ-
ent subsequence length (i.e. 32, 64, 128, 256), evaluated on A1Benchmark-Real and
A2Benchmark-Synthetic benchmarks from the Yahoo dataset. For all subsequence



Springer Nature 2021 LATEX template

24 Article Title

Table 3: The outlier detection accuracy of AAMP and STOMP algorithms on the
Yahoo dataset (“A3Benchmark-Synthetic”) based on 3 highest thresholds

Accuracies for m = 32
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.314 0.413 0.539
AAMP 0.339 0.468 0.594

Accuracies for m = 64
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.390 0.522 0.655
AAMP 0.366 0.490 0.596

Accuracies for m = 128
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.535 0.665 0.753
AAMP 0.542 0.754 0.876

Accuracies for m = 256
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.667 0.777 0.892
AAMP 0.777 0.891 0.947

lengths, AAMP has outperformed STOMP algorithm in the case of A1Benchmark-
Real dataset (see Table. 1). Whereas, for A2Benchmark-Synthetic dataset (see
Table. 2), AAMP has highly outperformed STOMP for the cases where the subse-
quence lengths are 32 and 64. But STOMP has performed better for the cases bigger
subsequence lengths i.e. 128 and 256.

Furthermore, in Tables 3 and 4 show the accuracies by AAMP and STOMP
algorithms for different subsequence length (i.e. 32, 64, 128, 256), evaluated on
A3Benchmark-Synthetic and A4Benchmark-Synthetic benchmarks from the Yahoo
dataset. It can be visible from Table 4 that AAMP has outperformed for subsequence
length m = 32, 128, 256. Whereas, STOMP has outperformed AAMP for sub-
sequence length m = 64. A very similar phenomenon can also be visible for dataset
A4Benchmark-Synthetic, shown in Table 4. The AAMP algorithm has outperformed
STOMP for the subsequence length m = 128 (except for the case of threshold =
85%) and m = 256. Whereas, STOMP has performed better for the sub-sequence
length m = 32, 64. From these experimental results, it can be visible that the per-
formance highly depends on the subsequence length (m), whereas it is hard to make
any conclusion about neither AAMP nor STOMP regarding it’s performance on the
subsequence length. TODO: can we say anything about the gap of accuracies
between AAMP and STOMP for some specific dataset e.g. A1Benchmark-Real

TODO: can we write AAMP has performed better in real yahoo dataset
compared to synthetic data ?
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Table 4: The outlier detection accuracy of AAMP and STOMP algorithms on the
Yahoo dataset (“A4Benchmark-Synthetic”) based on 3 highest thresholds

Accuracies for m = 32
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.287 0.369 0.492
AAMP 0.243 0.331 0.390

Accuracies for m = 64
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.338 0.434 0.498
AAMP 0.234 0.331 0.406

Accuracies for m = 128
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.349 0.436 0.530
AAMP 0.370 0.453 0.513

Accuracies for m = 256
Algorithm Threshold

(95%)
Threshold

(90%)
Threshold
(85%)

STOMP 0.473 0.545 0.619
AAMP 0.516 0.594 0.642

TODO: write about the most probable reasons of the performance e.g.
AAMP performs better because it takes care not only about the shape but also
the range of values of the time series

(a) (b) (c)

(d) (e) (f)

Figure 8: In each figure, Top: The original time series from “A1Benchmark”. Mid-
dle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-sequence
length (m) equals to 32 for the time series “45 real 5 .csv” and “40 real 45 .csv” (b)
(e) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f)
Results of sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

Figure 9: In each figure, Top: The original time series from “A2Benchmark”.
Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “45 synthetic 49 .csv” and
“78 synthetic 79 .csv” (b) (e) Results of sub-sequence length (m) equals to 64 for
the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the
same time series.

(a) (b) (c)

(d) (e) (f)

Figure 10: In each figure, Top: The original time series from “A2Benchmark”.
Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “35 synthetic 4 .csv” and
“58 synthetic 60 .csv” (b) (e) Results of sub-sequence length (m) equals to 64 for
the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the
same time series.

5.4 Pros and Cons of Z-normalized over Non-normalized distance
There are pros & cons of both the z-normalized and non-normalized Euclidean
distances. In this section, we discuss them.

5.4.1 Range of the matches

The techniques such as STOMP, SCRIMP, SCRIMP++ and ACAMP are able to find
the matches without taking into account the range of values of the matches. These
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(a) (b) (c)

(d) (e) (f)

Figure 11: In each figure, Top: The original time series from “A3Benchmark”.
Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “58 A3Benchmark-TS60 .csv”
and “100 A3Benchmark-TS99 .csv” (b) (e) Results of sub-sequence length (m)
equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m)
equals to 128 for the same time series.

techniques only consider the shape of the subsequences (because of z-normalization),
whereas a non-normalized Euclidean distance based technique, e.g., AAMP, can find
the matches from the same range of values as the given subsequence while taking
into account its shape as well. Some examples of the matches obtained by STOMP
and AAMP are shown in Fig. 1b. Hence, the z-normalization based techniques are ca-
pable of finding similar shape matches from any range of values, and can sometimes
provide better matches than non-normalized techniques (see an example in Fig. 12).
But when the range of values of the matches is important, then a technique such as
AAMP is more useful.

5.4.2 Zero standard deviation

It is a quite bothersome problem that the z-normalized distance of two subsequences
returns infinity when the standard deviation of one of the subsequences is zero (be-
cause of division by zero). This can happen when the signal of a subsequence remains
stable (i.e., all the values are same in the subsequence). This kind of situation is quite
frequent in real datasets, e.g., during the periods when there is no noticeable activi-
ties. This problem does not exist for AAMP algorithm (based on the non-normalized
Euclidean distance), because no division is done in its distance formula. An exam-
ple is shown in Fig. 5a by using a real seismic dataset where the values of longitudes
and heights are plotted. It can be visible that there are several places where the sig-
nals remain stable, hence the standard deviation of the subsequences (e.g. of size 50)
would become zero. In these cases, we see that AAMP is able to detect the outliers by
generating the matrix profile (see bottom images of Fig. 5a). But, the z-normalized
based techniques can not find these anomalies.
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Figure 12: Top: First two query sub-sequences from protein and the third sub-
sequence from sheep dataset. Middle: Better nearest neighbors, obtained by STOMP.
Bottom: The nearest neighbors, obtained by AAMP algorithm.

6 Related Work
Matrix profile has been recently proposed as an efficient technique for detecting mo-
tifs and discords in time series [7, 14]. In [1], Yeh et al. introduced the theoretical
foundations of matrix profile and proposed a first algorithm, called STAMP for com-
puting the matrix profile over a time series. It uses a similarity search algorithm,
called MASS [1] that computes z-normalized Euclidean distance between two sub-
sequences by using the Fast Fourier Transform (FFT). In [2], Zhu et al. proposed
an algorithm, called STOMP, that is faster than STAMP. The STOMP algorithm is
similar to STAMP but uses highly optimized nested loop algorithm by applying re-
peated calculation of distance profiles in the inner loop. However, while STAMP
must evaluate the distance profiles in random order (to allow its anytime behavior),
STOMP performs an ordered search. STOMP exploits the locality of these searches,
and reduces the time complexity by a factor of O(logn). In [8], the authors pro-
posed an extension of STOMP, called SCRIMP++ (also an anytime algorithm), that
usually converges faster than STOMP for large subsequence lengths. In [15], Zim-
merman et al. proposed an extension of the GPU-based version of STOMP algorithm
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[2] by exploiting several novel insights for motif discovery envelope, using a scal-
able framework which can be deployed in commercial cloud based GPU clusters.
To the best of our knowledge, almost all matrix profile algorithms have been de-
veloped for z-normalized Euclidean distance. In this paper, we proposed AAMP for
the non-normalized Euclidean distance. We also proposed two algorithms for the z-
normalized case, i.e., ACAMP and ACAMP-Optimized, that are significantly faster
than the state of the art algorithms working based on the z-normalized distance.
The ACAMP and ACAMP-Optimized algorithms are designed based on an efficient
incremental technique that does not need FFT calculations.

7 Conclusion
In this paper, we addressed the problem of matrix profile computation for a general
class of Euclidean distances. We first proposed an efficient algorithm called AAMP
for computing matrix profile for the non-normalized Euclidean distance. Then, we
extended our algorithm for the p-norm distance, which is a general form of Eu-
clidean. Then, we proposed ACAMP and its optimized version ACAMP-Optimized
that use the same principle as AAMP, but for the case of z-normalized Euclidean
distance. Our algorithms are exact, anytime, incrementally maintainable, and can be
implemented easily using different languages. To evaluate the performance of our al-
gorithms, we implemented them, and compared their performance with the baseline
algorithms such as STOMP, SCRIMP, SCRIMP++. The results show the efficiency
of AAMP and ACAMP-Optimized algorithms for computing matrix profile based on
z-normalized and non-normalized Euclidean distances. They also illustrate the util-
ity of the matrix profile generated by the AAMP algorithm for detecting anomalies
in some daatsets, for which the state-of-the-art algorithms are not useful. Overall, we
can conclude that both z-normalized and non-normalized based matrix profiles are
required for knowledge extraction in a wide range of applications. In this paper, we
proposed efficient techniques for both of them.
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Supplementary Materials (SM)
SM: I Case studies of multi-core based parallel

computing
As mentioned in Section ?? that we propose an approach to perform the parallel
computation of kNN MP by exploiting multiple cores. In the following section, we
discuss about two spacial cases:

SM: I.1 Incremental Computation of Z-Normalized Euclidean
Distance - Proof

Here, we present the proof of Lemma 3 and Equation 12 that gives an incremental
formula for computing matrix profile by using z-normalized Euclidean distance.

Proof. Let µi and µj be the mean of the values in the sequences Ti,m and Tj,m

respectively. Also, let σi and σj be the standard deviation of the values in the sub-
sequences Ti,m and Tj,m respectively. Then, the z-normalized Euclidean distance
between the subsequences Ti,m and Tj,m is defined as:

DZi,j =

√√√√m−1∑
l=1

(
ti+l − µi

σi
− tj+l − µj

σj

)2

(13)

where

µi =
1

m

m−1∑
l=0

ti+l; µj =
1

m

m−1∑
l=0

tj+l (14)

and

σi =

√√√√ 1

m

m−1∑
l=0

t2i+l − (µi)2; σj =

√√√√ 1

m

m−1∑
k=0

t2j+l − (µj)2. (15)

We can write the square of DZ as following:

DZ2
i,j =

∑m−1
l=0

(
ti+l−µi

σi
− tj+l−µj

σj

)2

=
∑m−1

l=0

((
ti+l−µi

σi

)2

− 2
(

ti+l−µi

σi

)(
tj+l−µj

σj

)
+
(

tj+l−µj

σj

)2
)

=
∑m−1

l=0

(
t2i+l−2ti+lµi+(µi)

2

(σi)2
− 2(

ti+ltj+l−µitj+l−ti+lµj+µjµi

σiσj

)
+

t2j+l−2tj+lµj+(µj)
2

(σj)2
)

(16)

Let
Ai =

∑m−1
l=0 ti+l; Bj =

∑m−1
l=0 tj+l; Ai =

∑m−1
l=0 t2i+l;

Bj =
∑m−1

l=0 t2j+l; Ci,j =
∑m−1

l=0 ti+ltj+l.
(17)

Then, we have:
µi =

1
mAi, µj =

1
mBj (18)
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(σi)
2 = 1

mAi − 1
m2A

2
i , (σj)

2 = 1
mBj − 1

m2B
2
j . (19)

Then, the z-normalized Euclidean distance can be written as:

DZ2
i,j =

∑m−1
l=0 (

t2i+l−2ti+lµi+(µi)
2

(σi)2

−2
(

ti+lbj+l−µitj+l−ti+lµj+µjµi

σiσj

)
+

t2j+l−2tj+lµj+(µj)
2

(σj)2
)

=
Ai−2A2

i
1
m+

A2
i

m
1
mAi− 1

m2 A2
i

− 2× Ci,j− 2
mAiBj+

AiBj
m√

( 1
mAi− 1

m2 A2
i )(

1
mBj− 1

m2 B2
j )
+

Bj−2B2
j

1
m+

B2
j

m
1
mBj− 1

m2 B2
j

= 2m− 2× m2Ci,j−mAiBj√
(mAi−A2

i )(mBj−B2
j )

= 2m

(
1− Ci,j− 1

mAiBj√
(Ai− 1

mA2
i )(Bj− 1

mB2
j )

)
.

(20)

As mentioned in Subsection 4.4.1, by taking

Fi,j =
(AiBj −mCi,j)× |AiBj −mCi,j|

(Ai − 1
mA2

i )(Bj − 1
mBj)

, (21)

we have DZi,j = 2m + 2sign(Fi,j) ×
√
|Fi,j | and we can use the following

equivalence in our algorithm:

DZi,j > DZi,k ⇔ Fi,j > Fi,k.

SM: I.2 Experiments with L-p norm for AAMP
In this section, we have explained the variation in performances of AAMP algorithm,
when L-p norm is applied.

SM: I.3 Choosing the interesting examples from UCR dataset
In continuation with the section 5.3.1, here we discuss the proposed algorithm to ob-
tain the interesting examples where the AAMP MP has performed better than STOMP
MP. In total, we automatically obtain 200 (empirically fixed) samples by using the
following algorithm. After that, we manually selected only few examples from these
200 samples.

i. Iterate over all the datasets, exists in UCR repository
ii. Iterate over 30 randomly chosen query time series

iii. Compute the STOMP MP and AAMP MP against each query time series
iv. Get the maximum value of STOMP MP bmax

STOMP and AAMP MP bmax
AAMP

respectively
v. Get the overall maximum value as boverallSTOMP and boverallAAMP of all the bmax

STOMP and
bmax
AAMP values for 30 query time series

vi. Normalize the values within 0− 1 by dividing the STOMP MP and AAMP MP
with boverallSTOMP and boverallAAMP
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Figure 13: In each figure, Top: The original time series from “A1Benchmark”.
Middle: The MP by AAMP. Bottom: The MP by STOMP.

vii. Compute the element-wise difference (γn) between the normalized STOMP MP
and AAMP MP; n is the length of the MP

viii. Get the mean of l = γn for each time series
ix. Store all such mean values in a list and perform sorting in descending order.

Before sorting, filter out, if there exists any NAN values in the this list.
x. Based on the sorted mean values, obtain 200 unique time series and plot the

original time series and their corresponding STOMP MP and AAMP MP.
xi. Then we manually verify and depicted the results of few of such selected time

series in this paper.
In the following Fig. 14, Fig. 15, Fig. 16, Fig. 17 and Fig. 18, we have mentioned

several more examples from UCR datasets where AAMP has outperformed STOMP
algorithm.
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(a) (b)

(c) (d)

(e)

Figure 14: (a, b, c, d, e) Top: Time series from PigAirwayPressure, In-
lineSkate, NonInvasiveFetalECGThorax1, NonInvasiveFetalECGThorax2 and
InsectEPGSmallTrain dataset respectively. Middle: the matrix profile, obtained by
STOMP algorithm; Bottom: The matrix profile, obtained by AAMP algorithm.
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(a) (b)

(c) (d)

(e)

Figure 15: (a, b, c, d, e) Top: Various time series from EthanolLevel dataset. Mid-
dle: the matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile,
obtained by AAMP algorithm. These matrix profile plots shows that in several cases,
the z-normalized based (STOMP) algorithm is able to find more clear detection of
outliers than AAMP.
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(a) (b)

(c) (d)

(e) (f)

Figure 16: (a, b, c) Top: Various time series from InlineSkate dataset. Middle: the
matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained
by AAMP algorithm. (f) Time series from EthanolLevel dataset and corresponding
matrix profile by STOMP and AAMP.
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(a) (b)

(c)

(d) (e)

Figure 17: (a, b, c) Top: Time series from MixedShapesRegularTrain, PigAir-
wayPressure, EOGVerticalSignal dataset. The discord is visible in it. Middle: the
matrix profile, obtained by STOMP algorithm; Bottom: The matrix profile, obtained
by AAMP algorithm. (d, e, f) Time series from EthanolLevel dataset and corre-
sponding matrix profile by STOMP and AAMP algorithm respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 18: (a) Top: The randomly chosen time series from CinCECGTorso dataset.
The discord is visible in it. Middle: the matrix profile, obtained by STOMP al-
gorithm; Bottom: The matrix profile, obtained by AAMP algorithm. (b, c, d,
e) The randomly chosen time series from EOGVerticalSignal, CinCECGTorso,
EOGHorizontalSignal and EOGVerticalSignal datasets and corresponding matrix
profile by STOMP and AAMP algorithms.
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SM: II Choosing the interesting examples from YAHOO dataset
In continuation with the section 5.3.2, here we have shown some more interesting examples to show the effectiveness of both the AAMP
and STOMP MP algorithms. There are instances when either AAMP has outperformed the STOMP algorithms and vice-versa. Furthermore,
there are several examples when both the AAMP and STOMP has performed well. In addition to that, we can also see few examples where
due the presence of multiple very similar discord patterns, the MP algorithms ( AAMP and/or STOMP) have wrongly considered them as
motifs (i.e. has shown low distance values in MP plots). By considering all these diverse visual examples, we have categorized them into
the following categories:

i. AAMP has outperformed STOMP
ii. STOMP has outperformed AAMP

iii. Both the STOMP and AAMP has performed well
iv. Discords are wrongly detected as motifs by MP algorithms

Each of the below mentioned figures in this section are organized in the following manner:
i. Individual interesting time series are shown along row wise

ii. The sub-sequence length (m) equals to 32, 64 and 128 are shown column-wise

SM: II.1 Few interesting results on A1 Benchmark
In this section, we show some interesting examples from A1 Benchmark dataset. This benchmark contains only 67 time series and among
them, we could mainly observe that AAMP has outperformed STOMP algorithm.

SM: II.1.1 AAMP has outperformed STOMP

In this section, we have shown several interesting examples, where it can visually seen that AAMP has outperformed STOMP algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 19: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “6 real 14.csv”, “14 real 21.csv” and “22 real 29.csv”. (b) (e) (h) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same
time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 20: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “28 real 34.csv”, “36 real 41.csv” and “37 real 42.csv”. (b) (e) (h) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same
time series.



SpringerN
ature

2021
L ATE X

tem
plate

12
A

rticle
Title

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 21: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “36 real 41.csv”, “37 real 42.csv” and “38 real 43.csv”. (b) (e) (h) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same
time series.
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(g) (h) (i)

Figure 22: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “40 real 45.csv”, “45 real 5.csv” and “57 real 60.csv”. (b) (e) (h) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same
time series.
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Figure 23: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “66 real 8.csv”, “67 real 9.csv” and “26 real 32.csv”. (b) (e) (h) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same
time series.
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Figure 24: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “9 real 17.csv”, “11 real 19 and “25 real 31.csv”. (b) (e) (h) Results of sub-
sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same time
series.
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Figure 25: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) Results of sub-
sequence length (m) equals to 32 for the time series “1 real 1.csv”. (b) Results of sub-sequence length (m) equals to 64 for the same time
series. (c) Results of sub-sequence length (m) equals to 128 for the same time series.
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SM: II.2 Few interesting results on A2 Benchmark
In this section, we show some interesting examples from A2 Benchmark dataset. This benchmark contains only 100 time series.

SM: II.2.1 AAMP has outperformed STOMP

In this section, we have shown several interesting examples, where it can visually seen that AAMP has outperformed STOMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 26: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “1 synthetic 1 .csv” and “6 synthetic 13 .csv. (b) (e) Results of sub-sequence length
(m) equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the same time series.
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Figure 27: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “8 synthetic 15 .csv”, “9 synthetic 16 .csv and “10 synthetic 17 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 28: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “11 synthetic 18 .csv”, “12 synthetic 19 .csv and “13 synthetic 2 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 29: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “14 synthetic 20 .csv”, “15 synthetic 21 .csv and “19 synthetic 25 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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(d) (e) (f)

(g) (h) (i)

Figure 30: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “21 synthetic 27 .csv”, “25 synthetic 30 .csv and “26 synthetic 31 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 31: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “37 synthetic 41 .csv”, “38 synthetic 42 .csv and “41 synthetic 45 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 32: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “42 synthetic 46 .csv”, “44 synthetic 48 .csv and “48 synthetic 51 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 33: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “49 synthetic 52 .csv”, “52 synthetic 55 .csv and “54 synthetic 57 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 34: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “57 synthetic 6 .csv”, “59 synthetic 61 .csv and “60 synthetic 62 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 35: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “64 synthetic 66 .csv”, “65 synthetic 67 .csv and “66 synthetic 68 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 36: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “68 synthetic 7 .csv”, “69 synthetic 70 .csv and “71 synthetic 72 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 37: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “72 synthetic 73 .csv”, “74 synthetic 75 .csv” and “82 synthetic 82 .csv” (b)
(e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to
128 for the same time series.
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Figure 38: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “77 synthetic 78 .csv”, “80 synthetic 80 .csv and “81 synthetic 81 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 39: In each figure, Top: The original *time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “83 synthetic 83 .csv”, “84 synthetic 84 .csv and “87 synthetic 87 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 40: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “88 synthetic 88 .csv”, “90 synthetic 9 .csv and “91 synthetic 90 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 41: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “94 synthetic 93 .csv”, “95 synthetic 94 .csv and “29 synthetic 34 .csv” (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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SM: II.2.2 STOMP has equally performed as AAMP

Here, we show several interesting examples, where it can visally seen that AAMP has almost equally performed as STOMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 42: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of
sub-sequence length (m) equals to 32 for the time series “35 synthetic 4 .csv” and “58 synthetic 60 .csv (b) (e) Results of sub-sequence
length (m) equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the same time series.
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Figure 43: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “67 synthetic 69 .csv”, “4 synthetic 11 .csv and and “61 synthetic 63 .csv” (b)
(e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to
128 for the same time series.
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SM: II.2.3 Discords are wrongly detected as Motifs by STOMP but correctly identified by AAMP

Here, we show several interesting examples, where it can visually seen that AAMP has almost equally performed as STOMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 44: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of
sub-sequence length (m) equals to 32 for the time series “17 synthetic 23 .csv and and “22 synthetic 28 .csv” (b) (e) (h) Results of sub-
sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same time
series.
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Figure 45: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “27 synthetic 32 .csv”, “30 synthetic 35 .csv” and and “32 synthetic 37 .csv”
(b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals
to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 46: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “39 synthetic 43 .csv”, “45 synthetic 49 .csv and and “47 synthetic 50 .csv” (b)
(e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to
128 for the same time series.
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Figure 47: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “50 synthetic 53 .csv”, “53 synthetic 56 .csv and and “55 synthetic 58 .csv” (b)
(e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to
128 for the same time series.
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Figure 48: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “56 synthetic 59 .csv”, “76 synthetic 77 .csv” and and “78 synthetic 79 .csv”
(b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals
to 128 for the same time series.
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Figure 49: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “85 synthetic 85 .csv”, “86 synthetic 86 .csv” and “92 synthetic 91 .csv (b) (e)
(h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128
for the same time series.
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Figure 50: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “96 synthetic 95 .csv”, “98 synthetic 97 .csv” and and “99 synthetic 98 .csv”
(b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals
to 128 for the same time series.
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Figure 51: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “3 synthetic 100 .csv”, “93 synthetic 92 .csv” and and “100 synthetic 99 .csv”
(b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals
to 128 for the same time series.
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SM: II.3 Choosing the interesting examples from YAHOO dataset (A3 Benchmark)
In continuation with the section 5.3.1, here we

SM: II.3.1 STOMP has outperformed AAMP

In this section, we have shown several interesting examples, where it can visually seen that AAMP has outperformed STOMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 52: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “58 A3Benchmark-TS60 .csv” and “60 A3Benchmark-TS62 .csv” (b) (e) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the same time
series.
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Figure 53: In each figure, Top: The original time seres. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “91 A3Benchmark-TS90 .csv”, “100 A3Benchmark-TS99 .csv” and
“62 A3Benchmark-TS64 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

Figure 54: In each figure, Top: The original time seres. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “91 A3Benchmark-TS90 .csv”, “100 A3Benchmark-TS99 .csv” and
“61 A3Benchmark-TS63 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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SM: II.3.2 AAMP has equally performed as STOMP

Here, we show several interesting examples, where it can visually seen that STOMP has equally performed as AAMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 55: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results
of sub-sequence length (m) equals to 32 for the time series “3 A3Benchmark-TS100 .csv” and “4 A3Benchmark-TS11 .csv” (b) (e) (h)
Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for
the same time series.
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Figure 56: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “37 A3Benchmark-TS41 .csv”, “40 A3Benchmark-TS44 .csv” and
“43 A3Benchmark-TS47 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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Figure 57: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “49 A3Benchmark-TS52 .csv”, “50 A3Benchmark-TS53 .csv” and
“51 A3Benchmark-TS54 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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Figure 58: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “52 A3Benchmark-TS55 .csv”, “54 A3Benchmark-TS57 .csv” and
“55 A3Benchmark-TS58 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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Figure 59: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “57 A3Benchmark-TS6 .csv”, “59 A3Benchmark-TS61 .csv” and
“63 A3Benchmark-TS65 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 60: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “64 A3Benchmark-TS66 .csv”, “66 A3Benchmark-TS68 .csv” and
“67 A3Benchmark-TS69 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 61: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “68 A3Benchmark-TS7 .csv”, “73 A3Benchmark-TS74 .csv” and
“75 A3Benchmark-TS76 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 62: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “76 A3Benchmark-TS77 .csv”, “77 A3Benchmark-TS78 .csv” and
“79 A3Benchmark-TS8 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 63: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “83 A3Benchmark-TS83 .csv”, “85 A3Benchmark-TS85 .csv” and
“86 A3Benchmark-TS86 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 64: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “87 A3Benchmark-TS87 .csv”, “89 A3Benchmark-TS89 .csv” and
“90 A3Benchmark-TS9 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 65: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “93 A3Benchmark-TS92 .csv”, “95 A3Benchmark-TS94 .csv” and
“98 A3Benchmark-TS97 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

Figure 66: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Results of
sub-sequence length (m) equals to 32 for the time series “99 A3Benchmark-TS98 .csv” (b) (e) (h) Results of sub-sequence length (m)
equals to 64 for the same time series. (c) (f) (i) Results of sub-sequence length (m) equals to 128 for the same time series.
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SM: II.4 Choosing the interesting examples from YAHOO dataset (A4 Benchmark)
In continuation with the section 5.3.1, here we

SM: II.4.1 AAMP has performed better than STOMP

Here, we show several interesting examples, where it can visually seen that STOMP has equally performed as AAMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 67: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of sub-
sequence length (m) equals to 32 for the time series “8 A4Benchmark-TS15 .csv” and “49 A4Benchmark-TS52 .csv” (b) (e) Results of
sub-sequence length (m) equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the same time
series.
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(a) (b) (c)

Figure 68: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) Result of sub-
sequence length (m) equals to 32 for the time series “80 A4Benchmark-TS80 .csv” (b) Results of sub-sequence length (m) equals to 64
for the same time series. (c) Results of sub-sequence length (m) equals to 128 for the same time series.

SM: II.4.2 STOMP has performed better than AAMP

Here, we show several interesting examples, where it can visually seen that STOMP has equally performed as AAMP algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 69: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “3 A4Benchmark-TS100 .csv”, “4 A4Benchmark-TS11 .csv” and
“5 A4Benchmark-TS12 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 70: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “12 A4Benchmark-TS19 .csv”, “13 A4Benchmark-TS2 .csv” and
“14 A4Benchmark-TS20 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 71: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “15 A4Benchmark-TS21 .csv”, “16 A4Benchmark-TS22 .csv” and
“17 A4Benchmark-TS23 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 72: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “23 A4Benchmark-TS29 .csv”, “24 A4Benchmark-TS3 .csv” and
“7 A4Benchmark-TS14 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 73: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “25 A4Benchmark-TS30 .csv”, “26 A4Benchmark-TS31 .csv” and
“48 A4Benchmark-TS51 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 74: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “30 A4Benchmark-TS35 .csv”, “33 A4Benchmark-TS38 .csv” and
“35 A4Benchmark-TS4 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 75: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “36 A4Benchmark-TS40 .csv”, “38 A4Benchmark-TS42 .csv” and
“27 A4Benchmark-TS32 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 76: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “45 A4Benchmark-TS49 .csv”, “46 A4Benchmark-TS5 .csv” and
“40 A4Benchmark-TS44 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 77: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “61 A4Benchmark-TS63 .csv”, “62 A4Benchmark-TS64 .csv” and
“51 A4Benchmark-TS54 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 78: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “66 A4Benchmark-TS68 .csv”, “67 A4Benchmark-TS69 .csv” and
“68 A4Benchmark-TS7 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 79: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “78 A4Benchmark-TS79 .csv”, “64 A4Benchmark-TS66 .csv” and
“91 A4Benchmark-TS90 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 80: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “83 A4Benchmark-TS83 .csv”, “84 A4Benchmark-TS84 .csv” and
“87 A4Benchmark-TS87 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(d) (e) (f)

(g) (h) (i)

Figure 81: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “93 A4Benchmark-TS92 .csv”, “96 A4Benchmark-TS95 .csv” and
“97 A4Benchmark-TS96 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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SM: II.4.3 STOMP has performed equal as AAMP

Here, we show several interesting examples, where it can visually seen that STOMP has equally performed as AAMP algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 82: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) Results of
sub-sequence length (m) equals to 32 for the time series “6 A4Benchmark-TS13 .csv” and “9 A4Benchmark-TS16 .csv” (b) (e) Results
of sub-sequence length (m) equals to 64 for the same time series. (c) (f) Results of sub-sequence length (m) equals to 128 for the same
time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 83: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “18 A4Benchmark-TS24 .csv”, “29 A4Benchmark-TS34 .csv” and
“39 A4Benchmark-TS43 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 84: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “41 A4Benchmark-TS45 .csv”, “43 A4Benchmark-TS47 .csv” and
“50 A4Benchmark-TS53 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 85: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “57 A4Benchmark-TS6 .csv”, “58 A4Benchmark-TS60 .csv” and
“59 A4Benchmark-TS61 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 86: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “71 A4Benchmark-TS72 .csv”, “72 A4Benchmark-TS73 .csv” and
“73 A4Benchmark-TS74 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 87: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “63 A4Benchmark-TS65 .csv”, “65 A4Benchmark-TS67 .csv” and
“82 A4Benchmark-TS82 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 88: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) (d) (g) Re-
sults of sub-sequence length (m) equals to 32 for the time series “88 A4Benchmark-TS88 .csv”, “89 A4Benchmark-TS89 .csv” and
“98 A4Benchmark-TS97 .csv” (b) (e) (h) Results of sub-sequence length (m) equals to 64 for the same time series. (c) (f) (i) Results of
sub-sequence length (m) equals to 128 for the same time series.
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(a) (b) (c)

Figure 89: In each figure, Top: The original time series. Middle: The MP by AAMP. Bottom: The MP by STOMP. (a) Results of sub-
sequence length (m) equals to 32 for the time series “10 A4Benchmark-TS17 .csv”. (b) Results of sub-sequence length (m) equals to 64
for the same time series. (c) Results of sub-sequence length (m) equals to 128 for the same time series.
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SM: II.5 Shapelet discovery
Here we explain how shapelets can be discovered by matrix profile, and then show
examples of shapelets discovered by z-normalized and non-normalized matrix profile
algorithms from real datasets.

Consider two time series A and B, having class 1 and 0 as their corresponding
class labels. We compute the matrix profiles of A an B, denoted by PA and PB ,
and also their joint matrix profiles PAB and PBA (see the definition of joint matrix
profile in Section 2). The shapelets can be discovered by calculating the difference in
heights of PAB v/s PA (or PBA v/s PB) which is then used as the indicator of good
shapelet candidates. The idea here is that if a discriminating pattern is present in A
and not in B, then it is highly probable that we will see a “bump” at the location of
this pattern in PAB (the same is true for PBA also). Hence, when an element-wise
difference (denoted by U = |PA−PAB |) is calculated between PA and PAB vectors,
we will find high values at those locations where such discriminating patterns (or
subsequences) exist in A (same is true for B, if we look into PB and PBA).

Using time series from the ArrowHead dataset of UCR Archive, in Fig. 90 (b)
and (d) we show the curve of PA and PAB along with the difference between PA and
PAB plotted in Fig. 90 (c) and (e) for the STOMP and AAMP algorithms respectively.
A significant difference (quantified by a threshold, shown in dashed line) is observed
between the heights of PA and PAB curves, which intrinsically locates the occurrence
of good candidate shapelets patterns (detected by STOMP and AAMP algorithms).
These difference curves can serve to locate the patterns that only occur in one of the
two time series (i.e., good candidates for shapelets). This experiment is performed
by randomly choosing 10 time series and concatenating them. The execution times
required by AAMP to compute PA and PAB are 0.05 and 0.17 seconds respectively.

Using time series from the ArrowHead dataset of UCR Archive, in Fig. 90 (b)
and (d) we show the curve of PAA and PAB along with the difference between PAA

and PAB plotted in Fig. 90 (c) and (e) for the STOMP and AAMP algorithms re-
spectively. A significant difference (quantified by a threshold, shown in dashed line)
is observed between the heights of PAA and PAB curves, which intrinsically locates
the occurrence of good candidate shapelets patterns (detected by STOMP and AAMP
algorithms). These difference curves can serve to locate the patterns that only occur
in one of the two time series (i.e., good candidates for shapelets). This experiment is
performed by randomly choosing 10 time series and concatenating them. The execu-
tion times required by AAMP to compute PAA and PAB are 0.05 and 0.17 seconds
respectively.

SM: II.6 Better performance of Z-Normalized distance over
non-normalized distance

In the following Fig.7, 15, 16, 17, we have shown some interesting examples where
the z-normalized distance has performed better than non normalized distance based
matrix profile. The images in Fig.7, shows that z-normalized distance is able to find
more possible locations of outliers by creating sharper peaks of matrix profile curve,
compared to AAMP based matrix profile.
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Time Series TB

Time Series TA
Shapelets detected by STOMP

Shapelets detected by AAMP

Figure 90: The time series shapelet discovery: (a) Two time series TA and TB formed
by concatenating individual time series of class 1 and 0 respectively of the Arrow-
Head dataset. (b) (d) The matrix profile PAA and PAB by STOMP and AAMP
algorithms respectively. (c) (e) The difference between PAB and PAA, by STOMP
and AAMP algorithms respectively.

Whereas, from examples shown in Fig.15, we can visualize that z-normalized
based matrix profiles (by STOMP algorithm) are able to show better and relevant
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possible outliers by detecting multiple and sharper peaks (marked by red circles),
compared to AAMP based matrix profile. The detection of multiple possible outliers
location by z-normalized based matrix profile would help the data analyst and domain
experts to manually validate it’s legitimacy as they will have more options of possible
outliers.

In Fig.16, 17 also, we show several matrix profile plots where z-normalized based
matrix profile is able to find different and extra location of possible outliers (com-
pared to non-normalized based matrix profile). Some time these detected outliers by
z-normalized based matrix profile are relevant and some times they are irrelevant.
But, it will always give a handful of extra and different possible outliers locations for
the domain experts.

SM: II.7 Independent join using AAMP algorithm
Previously, we have mentioned the self join case i.e. PAA for any particular time
series TA. In this section, we explain the technique to perform independent join i.e.
PAB between two time series TA and TB . The objective is to perform the similarity
search between Query (e.g. TA) and Target time series e.g. TB). The pseudo code
of independent join is mentioned in Algorithm 4. The operation of this algorithm
is visually illustrated in Fig. 91 by considering number of subsequence in TA i.e.
IdxsQ = 8 and number of subsequence in TB i.e. IdxsT = 21. The query and target
subsequences are denoted by QSSq and TSSq respectively. The description of the
algorithm is as follows: the line 1-5 is self-explanatory and has been described before.
In line 6, we initialize two rows of both the arrays (tempP ) and tempI by∞ and 1
respectively. In line 7, we iteratively perform diagonal jump of IdxsT − 1 ≡ n−m
number of times (because there are total n −m + 1 subsequences exists, hence we
can’t jump more than n −m number of times) and for each jump, we calculate the
distance between subsequent query and target subsequences.

Function Update Array(st, ed, tempP , tempI):
for p = st to ed do

if tempP [1, p] > tempP [pI, p] then
S = p + st − 1 tempP [1,S] = tempP [pI,S] tempI[1,S] =
tempI[pI,S]

returntempP, tempI

For example, when k = 0 (i.e. diagonal jump equals to zero), the distance is
computed between QSSq1 v/s TSSq1 followed by distance computation between
QSSq2 v/s TSSq2 etc.(follow the yellow color cells and 1 symbol in Fig. 91).
Then for k = 1, the distance is computed between QSSq1 v/s TSSq2 followed
by distance computation between QSSq2 v/s TSSq3 etc. (follow the green color
cells and 2 symbol in Fig. 91) and so on. In this way, k iterate for IdxsT − 1 num-
ber of times i.e we perform IdxsT − 1 numbers of diagonal jumps. But among all
these jumps, until IdxsT − IdxsQ numbers of diagonal jumps, we can compute the
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distance between all the subsequent query subsequences and corresponding target
subsequences (follow maroon color cells and 14 symbol in Fig. 91 where distances
are calculated between QSSq1 v/s TSSq14, QSSq2 v/s TSSq15 etc.). If we
take any more jumps after that then we can’t compute the distance between all the
query subsequences and corresponding target subsequences. This rationale is imple-
mented in line 8-11 of Algorithm 91. If k ≤ (IdxT − IdxQ) then E is equal to IdxQ

which means that we can compute distance for all the query subsequences otherwise
E is taken as IdxsT − k; that means we can calculate distance of E number of query
subsequences, where in each iteration, E is obtained by subtracting/removing the al-
ready taken jumps (i.e. k) from total number of target subsequences (IdxsT ) (follow
the bottom yellow colored triangular regions in Fig. 91). Now the distance between
the 1st query subsequence and k+1th subsequence of target time series is calculated
in line 16 and are saved at pIth row of tempP . The value of pI is taken as 1 for the
very first jump only (k = 0) but for other jumps, pI is taken as 2. For k > 0, the
distance between other subsequences are iteratively and incrementally calculated in
Line 19-20. In each iteration of Line 19, we incrementally calculate the distance be-
tween ith subsequence of Q and J th subsequence of T . In line 20, the incremental
distance is calculated by subtracting the term [tJ−1− qi−1], (which represents 1st el-
ements of two previous subsequences i.e. J − 1th and i− 1th subsequences of T and
Q respectively) from previously computed distance i.e. dist, followed by adding the
term [tJ+m−1−qi+m−1] (which represents the last elements of current subsequences
i.e. J th and ith subsequences of T and Q respectively).

Then the calculated distance values and respective indexes are iteratively updated
in Line 22. Except the 1st jump (i.e. k = 0), for every other jumps (when k > 0),
we first keep the distances at the 2nd row (i.e. pI = 2) then compare the previously
stored best distances in 1st row of tempP array. These operation is performed in
“Update Array()” function in Line 22.

After calculating all the distances in left to right direction (i.e. except the top cells,
covered with red colored triangular region in Fig. 91), the distance calculations are
performed from right to left direction. These operations are visually represented as
red colored region at the top of Fig. 91. The operations for these cells or the distance
computation between these subsequences of Q and T were not performed before.
In line 23, we perform IdxsQ − 1 number of jumps iteratively (notice that iJump
starts here from 1 instead of 0 because we want to perform distance computations of
QSSq8 v/s TSSq7, QSSq7 v/s TSSq6 etc. instead of QSSq8 v/s TSSq8,
QSSq7 v/s TSSq7 etc. which were already computed before). For every jump in
Line 23, we initiate the distance computation between the last query i.e. Idxth

Q query
subsequence and tStth subsequence of T . The value of tSt is computed by k number
of jumps from IdxQ number of subsequences (see Line 24).

In line 28-31, the distance between tStth subsequence from T and qStth subse-
quence from Q are iteratively calculated in an incremental fashion. To calculate the
distance incrementally, in line 31, we subtract the term “[ttSt − qqSt]”, which repre-
sents 1st elements of two previous subsequences i.e. tStth and qStth elements of T
and Q respectively from previously computed distance i.e. dist and adding the term
“[ttSt+m− qtSt+m]”, which represents the last elements of current subsequences i.e.
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Q11q1 Q11q2 Q11q3 Q11q4 Q11q5 Q11q6 Q11q7 Q11q8

T11q1 1 22 23 24 25 26 27 28

T11q2 2 1 22 23 24 25 26 27

T11q3 3 2 1 22 23 24 25 26

T11q4 4 3 2 1 22 23 24 25

T11q5 5 4 3 2 1 22 23 24

T11q6 6 5 4 3 2 1 22 23

T11q7 7 6 5 4 3 2 1 22

T11q8 8 7 6 5 4 3 2 1

T11q9 9 8 7 6 5 4 3 2

T11q10 10 9 8 7 6 5 4 3

T11q11 11 10 9 8 7 6 5 4

T11q12 12 11 10 9 8 7 6 5

T11q13 13 12 11 10 9 8 7 6

T11q14 14 13 12 11 10 9 8 7

T11q15 15 14 13 12 11 10 9 8

T11q16 16 15 14 13 12 11 10 9

T11q17 17 16 15 14 13 12 11 10

T11q18 18 17 16 15 14 13 12 11

T11q19 19 18 17 16 15 14 13 12

T11q20 20 19 18 17 16 15 14 13

T11q21 21 20 19 18 17 16 15 14

TSSq = Target Sub-sequence; QSSq = Query Sub-sequence

Figure 91: a) The subsequences of query and target time series are arranged in a
matrix to better understand the functioning of AAMP algorithm. By looking at the
cells of the matrix, we can see in which iteration, the distance of two subsequences
is calculated. Different iterations are represented by different colors.

tSt + mth and qSt + mth elements of T and Q respectively. Then the calculated
distance values and respective indexes are iteratively updated in Line 32-33.

The visual representation of the query subsequences which are considered in each
iteration are shown as top red colored region in Fig. 91, where it can be seen that in
1st iteration, we operate on QSSq8-QSSq2 (follow the blue colored cells) and in
2nd iteration, we operate on QSSq8-QSSq3 and so on.

The independent join i.e. JAB computation by ACAMP algorithm can be done
by following the same strategy/approach of calculating the distances between subse-
quences of query and target time series as it is done in the case of AAMP algorithm.
The only difference is that here we need to calculate z-normalized euclidean distance
(see violet colored lines in Algorithm 2) instead of classical euclidean distance. We
try to keep the same line numbering as in Algorithm 4 to keep the conformity in
line numbering. The extra lines, related to z-normalized euclidean distance compu-
tations are numerated in Roman numerals (i.e. i, ii, iii, ....) to distinguish them from
the common lines between Algorithm 2 and Algorithm 4.

To calculate the Z-normalized euclidean distance between two subsequent sub-
sequences, we first compute the mean (µQ, µT ) and standard deviation (σQ, σT ) of
all the possible subsequences of T and Q in line i - ii. The distance (in Line 16)
between the 1st (q) and k + 1th (t) subsequence is calculated by using the means
(i.e. µQ and µT ) and standard deviations (i.e. σQ and σT ) of q and t respectively.
The incremental Z-normalized distance in Line 20 is calculated by using means (µq,
µt) and standard deviations (σq, σt) to calculate prod in an incremental manner. The
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variable prod is computed by subtracting Q[i − 1] × T [J − 1] term and by adding
Q[i+m−1]×T [J +m−1] term with previously calculated prod value. In this for-
mulation, the Q[i−1] and T [J−1] terms represents the first elements of previous (i.e.
i− 1th and J − 1th) subsequences (where the current subsequence is represented by
ith and J th indexes). Whereas, the Q[i+m−1] and T [J+m−1] terms represent the
last elements of current i.e. ith and J th subsequences. Then the distance is calculated
by using Equation ??. In the same manner, we compute the Z-normalized euclidean
distance of qStth and tStth subsequences of Q and T respectively in Line ix - 27,
whereas the incremental euclidean distance between tStth and qStth subsequences
is calculated in Line xii - 32 in the same manner as it was done in Line vi - 20.

SM: II.8 Fast Calculation of Mean and Standard Deviation :
The fast calculation of mean (µ) and standard deviation (σ) of a vector of elements
(x) is proposed by Rakthanmanon et.al [16]. The technique needs only one scan
through the sample to compute the mean and standard deviation of all the subse-
quences. The mean of the subsequences can be calculated by keeping two running
sums of the long time series which have a lag of exactly m values.

µ = 1
m

(∑k
i=1 xi −

∑k−m
i=1 xi

)
σ2 = 1

m

(∑k
i=1 x

2
i −

∑k−m
i=1 x2

i

)
− µ2 (22)

In the same manner, the sum of squares of the subsequences can also be calculated
which are used to compute the standard deviation of all the subsequences by using
the Equations 22.
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Algorithm 4: Independent AAMP
Input: T : target time series; Q: query time series; n: length of time series T ;

Q: length of time series Q; m: subsequence length
Output: P : Matrix profile; I: Matrix profile Indexes;

1 begin
2 IdxT = n−m+ 1 IdxQ = Q−m+ 1
3 Flag = False
4 for i = 1 to IdxQ do
5 P[i] =∞ I[i] = 1 {initialize two arrays }
6 tempP [1:2, i] =∞ tempI [1:2, i] = 1

7 for k = 0 to IdxT − 1 do
8 if k ≤ IdxT − IdxQ then
9 E← IdxsQ

10 else
11 E← IdxsT − k

12 if k == 0 then
13 pI ← 1

14 else
15 pI ← 2; Flag = True

16 dist = Euc Distance(Q1:m, Tk+1:m+k)
17 tempP [pI, 1]← dist; tempI[pI, 1]← k + 1
18 for i = 2 to E do
19 J = k + i
20 dist =

√
(dist2 − (tJ−1 − qi−1)2 + (tJ+m−1 − qi+m−1)2

21 tempP [pI, i] = dist; tempI[pI, i] = J
22 if Flag == True then
23 [ tempP, tempI]← Update Array (1, E, tempP , tempI)

24 for k = 1 to (IdxQ − 1) do
25 E = IdxsQ − k; tSt = IdxsQ − k
26 qSt = IdxsQ
27 dist = Euc Distance(QqSt : qSt+m−1, TtSt : tSt+m−1)
28 tempP [qSt] = dist; tempI[qSt] = tSt;
29 for i = 2 to E do
30 tSt = IdxsQ − (i− 1)− k
31 qSt = IdxsQ − (i− 1)
32 dist =

√
(dist2 − (ttSt − qqSt)2 + (ttSt+m − qqSt+m)2

33 tempP [pI, qSt] = dist; tempI[pI, qSt] = tSt
34 [ tempP, tempI]← Update Array (qSt, IdxQu, tempP ,

tempI)

35 for i = 1 to IdxQ do
36 tempP [i] =

√
tempP [i]

37 P [1, :] = tempP [1, :]; I[1, :] = tempI[1, :]
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Algorithm 5: Independent ACAMP
Input: T : target time series; Q: query time series; n: length of time series T ;

Q: length of time series Q; m: subsequence length
Output: P : Matrix profile; I: Matrix profile Indexes;
begin

..
i. [µT , σT ]← ComputeMeanStd(T )

{For details, see section SM: II.8 }ii. [µQ, σQ]← ComputeMeanStd(Q)
7 for k = 0 to IdxT − 1 do

..
iii. q← Q1:m ; t← Tk+1:m+k

iv. µq ← µQ[1] ; µt ← µT [1]
v. σq ← σT [1] ; σt ← σT [1]

16 [dist, prod] = Z Norm Euc Dis(q, t,m, µq, µt, σq, σt)
17 tempP [pI, 1]← dist; tempI[pI, 1]← k + 1
18 for i = 2 to E do
19 J = k + i
vi. µq ← µQ[i] ; µt ← µT [J ]

vii. σq ← σQ[i] ; σt ← σT [J ]
viii. prod = prod− (Q[i− 1]× T [J − 1]) + (Q[i+m− 1]× T [J +m− 1])

20 dist = 2×
(
m− prod−(m×µq×µt)

σq×σt

)
21 tempP [pI, i] = dist; tempI[pI, i] = J

22 if Flag == True then
..

24 for k = 1 to (IdxQ − 1) do
25 E = IdxsQ − k; tSt = IdxsQ − k
26 qSt = IdxsQ
ix. q← QqSt:qSt+m−1 ; t← TtSt:tSt+m−1

x. µq ← µQ[qSt] ; µt ← µT [tSt]
xi. σq ← σT [qSt] ; σt ← σT [tSt]
27 [dist, prod] = Z Norm Euc Dis(q, t,m, µq, µt, σq, σt)
28 tempP [qSt] = dist; tempI[qSt] = tSt;
29 for i = 2 to E do
30 tSt = IdxsQ − (i− 1)− k
31 qSt = IdxsQ − (i− 1)

xii. µq ← µQ[qSt] ; µt ← µT [tSt]
xiii. σq ← σQ[qSt] ; σt ← σT [tSt]
xiv. prod = prod− (Q[qSt]× T [tSt]) + (Q[qSt+m]× T [tSt+m])

32 dist = 2×
(
m− prod−(m×µq×µt)

σq×σt

)
33 tempP [pI, qSt] = dist; tempI[pI, qSt] = tSt
34 [ tempP, tempI]← Update Array (qSt, IdxQu, tempP ,

tempI)

37 P [1, :] = tempP [1, :]; I[1, :] = tempI[1, :]
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