
1

Matrix Profile Based kNN Search over Large
Multi-Dimensional Time Series

Tanmoy Mondal∗, Reza Akbarinia∗ and Florent Masseglia∗
∗ZENITH Team, INRIA & LIRMM, Univ. Montpellier, France
{tanmoy.mondal, reza.akbarinia, florent.masseglia}@inria.fr

Abstract—Matrix Profile ..

Index Terms—Time series analysis; STAMP; STOMP; All-pairs-similarity search; Motifs and discord discovery; Outliers detection;
Anomaly detection; Joins

F

1 INTRODUCTION

T He topic of all pair similarity search has been highly
explored in the last decade. This problem is also known

as similarity join which can be defined in simple words as
follows.....

2 PROBLEM DEFINITION

The following section is rather dense on terminology and def-
initions which are necessary to concretely define the problem
statement and to explain the proposed algorithms/techniques.
We begin with the definition of a “time series” (T ∈ Rn),
which can be denoted by a sequence of real valued numbers
ti ∈ R as: T = t1,, tn, where n denotes the length of the
time series. A time series sub-sequence Ti,m of a time series
T (of length n) is a continuous sub-set of the values/elements
from T of length m;m << n starting from position from p,
that is Ti,m = Ti,p,, Ti,p+m−1 for 1 ≤ p ≤ n−m+1; where
m is a real value which represents the size of sub-sequence.
An all sub-sequence set can be defined as an ordered set of all
sub-sequences of T which are obtained by sliding a window
of length m across T : A = {T1,m, T2,m,, Tn−m+1,m},
where m is a user defined sub-sequence length.

Definition 1: Distance profile : The distance between a
sub-sequence Ti,m with all other sub-sequences of time series
T gives a 1D vector of distances which is called distance
profile of Ti,m.
The minimum value of this distance vector represents the
closest match or 1NN and the top k minimum values of this
vector represents kNN matches. Considering these 1NN or
kNN for all the sub-sequences in a time series T are called as
either 1NN Matrix Profile or kNN Matrix Profile respectively.
If the distance of closest match (1NN) of any sub-sequence
Ti is less than a user defined threshold then Ti is called motif.
In other words, a motif pair can be defined as the unordered

• M. Tanmoy Mondal is currently with “Signal and Communication” Team,
IMT Atlantique, Brest, France.

pair of sub-sequences {Ti, Tj ∈ T} which is most similar
(i.e. 1NN) and has a distance value less than a user defined
threshold (i.e. Dist(Ti, Tj) ≤ τ ; where τ is an user defined
threshold) are called as motif pair i.e. 〈Ti, Tj〉; |i− j|≥ w for
w > 0. Where w is user defined threshold which tells that
two sub-sequences in a pair should be w elements apart. The
definition of match, forces the matched sub-sequence couple
to be mutually exclusive otherwise the motifs might share the
majority of their elements and thus could be essentially the
same. This helps to prune out the trivial sub-sequence matches.

Definition 2: Time Series Discord : A sub-sequence Ti ∈
T is a discord if the distance of it’s 1NN match is greater
than an user defined high threshold; say τ . Whereas, if the
distance of Ti with it’s kth nearest neighbors is higher than τ
then it is called kNN discord.

Definition 3: kNN Matrix Profile : The kNN matrix pro-
file denoted as PT [i], which can be thought as a k numbers of
vertical 1D vectors, consists of k number of closest Euclidean
distances between any sub-sequence Ti and it’s k nearest
neighbors, obtained from time series T . Hence, PT is a 2D
vector or a matrix where the k nearest neighbors of each sub-
sequence i.e. Ti are stored vertically or column wise. For the
case of 1NN matrix profile, k is simply taken as 1.

Definition 4: kNN Matrix Profile Index The kNN matrix
profile index can be defined as IT [i] which is a 2D matrix,
where each column of this matrix are consisting of the indexes
of k nearest neighbors of any sub-sequence Ti. For the case
of 1NN matrix profile index, k is simply taken as 1.
The primary goal of this article is to find kNN matches of
each sub-sequence by creating these two meta vectors i.e. the
matrix profile and the matrix profile index.

Until now, we have talked about 1D time series and cal-
culation of 1NN & kNN matrix profile and matrix profile
indexes of 1D time series. In the following section, we
introduce the concept of the calculation of 1NN & kNN
matrix profile and matrix profile indexes of multi-dimensional
time series. A multi-dimensional time series T̂ ∈ Rd×n
which is a d dimensional time series of length n where
T̂ = [T 1

n , T
2
n , T

3
n ,, T

d
n] can be imagined as a matrix of

n rows and d columns. Whereas, a multidimensional sub-

2

sequence T̂i,m ∈ Rd×m of a multi-dimensional time series
T̂ can be defined as continuous subset of values from T̂ of
length m, starting at position/index i, which can be formally
defined as T̂i,m = [T 1

i,m, T
2
i,m, T

3
i,m,, T

d
i,m]. It is mentioned

in [1] that using all the dimensions of a time series for motifs
discovery usually guaranteed to fail. A similar observation
was claimed in [2] for time series classifications. Hence, it
is recommended to use a sub-set of all the dimensions should
be used for multi-dimensional motif discovery.

Definition 5: Sub-dimensional sub-sequences: A sub-
dimensional sub-sequence can be defined as T̂ pi,m ∈ Rp×m,
which is a multi-dimensional sub-sequence which is based on
some selection criterion (described later), only a sub-set of
dimensions are selected, where k is the number of dimensions
included.
In this paper, we have mentioned the way to compute the
distance between two multi-dimensional time sub-sequences
by using only the selected dimensions of each sub-sequences.
Hence, the distance function that measures this relation is
called p-dimensional distance.

Definition 6: p-dimensional distance: A p-dimensional
distance function or distp can be defined as the distance
between two multi-dimensional sub-sequences by automati-
cally choosing the best p dimensions out of existing d dimen-
sions. This can be formally defined as distp(T̂i,m, T̂j,m) =
dist(T̂ pi,m, T̂

p
j,m)

After mentioning the p-dimensional distance, we can now de-
scribe the p-dimensional distance profile. A p-dimensional dis-
tance profile of a sub-sequence T̂i,m can be defined as a vector
that stores the distance : distp(T̂ pi,m, T̂

p
j,m)∀j ∈ [1, 2, 3, n −

m + 1]. Like the definition of motif for 1 dimensional time
series, a motif for d dimensional time series can be similarly
defined as the unordered pair (i.e. Dist(T̂ pi,m, T̂

p
j,m) ≤ τ ;

where τ is an user defined threshold) and the starting positions
of these two sub-sequences i.e. i and j are w elements apart i.e.
|i− j|≥ w. Whereas, the top k motifs of any sub-sequence Ti
can be defined as Dist(T̂ pi,m, T̂

p
j,m) ≤ Dist(T̂ pi,m, T̂

p
j+1,m) ≤

τ ; j ∈ [1, 2, 3, k − 1]. Which means the distance between ith

sub-sequence and any other jth sub-sequence is less than
j + 1th sub-sequence, where these distance are sorted in
ascending order.

Definition 7: p-dimensional matrix profile and matrix pro-
file index: A p-dimensional matrix profile P̂ ∈ Rn−m+1

of a multi-dimensional time series T̂ can be thought as 1D
horizontal vector, containing the nearest neighbor distances of
each sub-sequence of T̂ , where the distances are calculated
between two sub-sequence by using p dimensional distance
(see Definition 6). Whereas, the matrix profile index stores
the indexes of the best matching (1NN) sub-sequence.

Definition 8: top kNN based on p-dimensional distance of
a sub-sequence: Based on the p dimensional distance profile
of any sub-sequence T̂i,m, we can sort the distance profile in
ascending order and can obtain top k of such distances which
can be considered as kNN matches, based on p-dimensional
distances of T̂i,m.

Definition 9: kNN matrix profile by considering p dimen-
sions of a time series sub-sequence: A kNN matrix profile
by considering p dimensions of a time series can be denoted

as : P̂ pk ∈ R(n−m+1)×k, which can be thought as k number of
vertical vectors or a matrix of k rows and n−m+ 1 number
of columns. This matrix P̂ pk contains the k nearest neighbor
distances of each sub-sequence of T̂ , where these distances
are calculated between two sub-sequence by automatically
considering the p dimensions (see Definition 6) of the time
series sub-sequences.
In the similar manner, the kNN matrix profile index matrix will
store the indexes of top k matches of every sub-sequences.
Based on these two matrices i.e. kNN matrix profile and
kNN matrix profile index, we can obtain the answers of
many time series data mining tasks such as motifs and discord
discovery, similarity search etc. In the follows section, we
provide a brief overview of literature related to similarity
search of multi dimensional time series.

3 RELATED WORD IN SIMILARITY SEARCH
Similarity join can be categorized into two principal cate-
gories, 1NN Similarity Join and kNN Similarity Join. The
kNN Similarity Join can be thought as the immediate and
obvious extension of 1NN Similarity Join. Yeh et. al [3] has
proposed Matrix Profile based STAMP/STOMP algorithm for
1NN Similarity Join. Matrix profile is designed mainly to
perform 1NN Similarity Join and it can’t be directly used for
kNN Similarity Join. Nevertheless, the technique proposed in
[3] doesn’t require any parameters to set and it’s a fast, robust,
anytime and incremental solution.

In case of all sub-sequence matching of time series, the
authors in [4] has proposed an approach to optimize the
calculation of Euclidean Distance between all the possible
combination of sub-sequences exists in the database. They
proposed to interleave the early abandoning calculations of
Euclidean Distance with the concept of online Z normaliza-
tion. By reusing computations of z-normalized distances for
overlapping sub-sequences, the authors has highly save the
computation time and was able to reduce the search space into
quadratic complexity. Mueen et.al proposed MASS algorithm
[5] which exploits the consecutive sub-sequence overlapping
property to calculate Z normalized distance by Fast Fourier
Transform (FFT) based convolutions, which has a worst case
time complexity of O(n logn).

In [3], the authors have used the convolution property of
FFT and Inverse FFT for the fast calculation of distances
between two sub-sequence pair. Furthermore, an incremental
approach is adapted for distance computation of overlapping
sequential sub-sequences in which they have used MASS
algorithm for time series similarity search by computing z-
normalized euclidean distance between the sub-sequences. In
[6], the authors have introduced an anytime algorithm, named
as SCRIMP++ by combining the best features of STAMP
and STOMP for fast convergence. But this technique is also
for 1NN matrix profile and based on the same incremental
matching principal as STOMP.

4 RELATED WORD IN SIMILARITY SEARCH OF
MULTIDIMENSIONAL TIME SERIES
In this article, we are focused to solve similarity join problem
on multi-dimensional datasets which can be simply defined as :

3

provided a set of data objects (for our case the sub-sequences),
the objective is to retrieve the k nearest neighbors for each
object.

A nice attempts were made for multidimensional motif
discovery as a means for patient activity monitoring. Mo-
tifs discovery are useful to capture repeating patterns across
multiple dimensions of the data [7]. This approach is real
time for multidimensional motifs discovery in time series.
These time series are generated by body sensors, used for
monitoring the performance of patients during therapy. The
authors presented two alternative models for multidimensional
motifs discovery based on motif co-occurrences and tempo-
ral ordering among motifs across multiple dimensions. This
method uses an efficient hashing based record to enable speedy
update and retrieval of motif sets and the identifications of
multidimensional motifs. The approach is tested on synthetic
and real body sensor data for concurrent processing of mul-
tidimensional time series data to find unknown and naturally
occurring patterns with minimal delay and tracking similarities
among repetitions, mainly during the therapy sessions.

The technique mentioned in [8] achieves the scalability
by searching over a piece-wise linear approximation of the
original data by transforming it into string which facilitates
the finding of recurring motifs. The piece-wise linear approx-
imation techniques has been used in literature over several
occasions for 1D time series data and has shown interesting
results with carefully chosen parameters on relatively smooth
data. But it is little unclear that how the authors has used the
technique of piece-wise linear approximations for multi-variate
data.

Vahdatpour et.al [9] proposed a technique for multi-
dimensional time series motifs discovery and apply it in
various medical monitoring applications. They calculate time
series motifs for each individual dimensions and uses clus-
tering technique to “stitch” together various dimensions. The
authors tested their system on the data, gathered from sensors
embedded in two different wearable systems, i.e. SmartCane
and SmartShoe. Based on all the domains which were tested
by the authors, even in the case of obvious motifs for simple
and small problems, the authors could never achieve the
accuracy more than 85% (even by considering at most three
irrelevant dimensions). Moreover, the main bottleneck of their
approach is the necessity to tune 7 parameters which has high
influence on their results. But tuning these parameters could
be a cumbersome job in the case of new challenging data-sets.

The approach proposed by Tanaka et al.[10] for the motif
discovery in multi-dimensional time series data by simply
transforming the multi-dimensional time series data into one
dimensional data. This method is designed in a manner which
requires to consider all dimensions or at least most of the
dimensions of the data. Hence, if there are some or even
few irrelevant dimensions then it hampers the accuracy of
the system. Moreover, the computational speed of the system
depends on correct tuning of 5 parameters which is strong
bottleneck of this algorithm and due to that it may perform
badly on some new data-sets.

The work in [11] addresses the problem of locating sub-
dimensional motifs in real-valued, multivariate time series,

which is capable to detect sets of recurring patterns along the
corresponding relevant dimensions. The classical approaches
of motifs discovery are restricted to categorical data i.e. uni-
variate time series and/or multi-variate time series in which
it is considered that the temporal patterns spans to all the
dimensions. But the technique in [11] generalizes the multi-
dimensional pattern discovery in which each motif may span
only a subset of the dimensions. Their work show the detri-
mental effects of irrelevant dimensions on multi-dimensional
motif search and they proposed a technique which was some-
what successful and robust for small number of smooth but
irrelevant dimensions, or just one noisy irrelevant dimension.
But the main issue is that this algorithm is approximate and
even in ideal cases this algorithm reports to have 80% accuracy
with a six dimensional data, having no noise.

In [12], the authors has proposed a technique for discovering
of sub-dimensional motifs of different lengths in multivariate
time series. They have introduced an approximate variable-
length sub-dimensional motif discovery algorithm called col-
laborative hierarchy based motif enumeration to detect vari-
able length sub-dimensional motifs (even when the motif
length is considerably larger than minimum length), given a
minimum motif length. A technique known as DiscMotifs to
discover k most significant motifs from an uni-variate time
series is proposed in [12]. First, the algorithm transforms the
time series into a SAX representation and then the algorithm
divides the SAX representation into sub-sequences. After
that these sub-sequences are linearized by projecting them
into a one-dimensional space based on their distances from
a randomly selected reference point or sub-sequences. By
utilizing the linear ordering of sub-sequences, DiscMotifs is
able to discover k most significant motifs.

A matrix profile based motif discovery technique for multi-
dimensional time series known as mSTAMP is proposed in [1].
The mSTAMP algorithm finds motifs by calculating a cumu-
lative distance through re-ordering of distances, calculated in
each dimensions. This method is also capable of only selecting
some dimensions as well is capable of ignoring certain user-
defined dimensions. Hence, unlike other techniques in the
literature, this method is capable to avoid the finding of motifs
from all dimensions which many a times ends up in wrong
motif discovery.

5 ALGORITHMS

After explaining all the definitions in Section 2 and the relevant
state-of-the-art techniques in Section 4, in this section we are
ready to describe our proposed algorithm. In the following
section, we have proposed an algorithm for finding kNN
matches of all the sub-sequences of a multi-dimensional time
series based on computed distance profile.

5.1 kNN similarity search of multi-dimensional time
series
Finding kNN matches of all the sub-sequences of a time
series T d is performed in the following manner where d
is the total number of dimensions of the time series. Let’s
consider an example where in a time series database DT ,

4

there are x number of time series of different lengths :
{T d1 , T d2 , T d3 ,, T dx } ∈ DT . By concatenating all the time
series in DT , we can obtain a big time series T . Now the
goal is to find the closest match of all the sub-sequences of
T . The following Algorithm 4 is proposed which basically
computes the distance of each sub-sequence of T with all the
remaining sub-sequences and based on this repetitive process,
we find the top k best matches of each query sub-sequences.
One such visual example of multi-dimensional time series is
shown in Fig. 1b.

The pseudo code of the proposed algorithms is shown in
Algorithm 1. All the individual time series from database
DT are sequentially concatenated to form a concatenated
time series T (Line 2) and the information e.g. start and
end indexes/locations of an individual time series when it is
concatenated to generate T are saved in InfoT . Also the file
name or index of the individual time series are also saved
in InfoT . The length of T and total number of possible
sub-sequence of T are calculated in nT and IdxT variable
respectively (Line 4). The mean (µT) and standard deviation
(σT) of all the sub-sequences of T are calculated by iterating
over the dimensions of T and by using ComputeMeanStd()
function (Line 5−6) (to get the details of this function, please
see Appendix B of our previous article in [13]). After obtain-
ing the very first sub-sequence of T in Line 7, the distance
between first sub-sequence and all the other sub-sequences are
calculated in Line 9 by using the function MASS() (to get the
details of this function, please see Appendix C of our previous
article in [13]). The arguments passed in this function are the
first sub-sequence of T (i.e. subSeq1), mean and standard
deviation of subSeq1 i.e. µT [1], σT [1], complete time series T
and the mean and standard deviations of all the sub-sequence
of T i.e. µT [1 : IdxT], σT [1 : IdxT] respectively (Line
8−9). The dot product between the subSeq1 and all other sub-
sequences of T is stored in QTinitial (Line 10). In Line 11,
we perform the remaining operations in Obtain kNNMatches()
function.

Now in the function Obtain kNNMatches(), the 3D matrices
PQ, IQ, MQ, DQ, dQ, IQ are initialized with ∞ and zeros
respectively (see Obtain kNNMatches() function) in line 1-2.
Then we iterate over all the sub-sequences of T in Line 4 and
for each dimension of T , we chop the sub-sequence of size
m in Line 6. If the standard deviation of this sub-sequence is
not zero (Line 7) and this is the first valid sub-sequence along
iDimth dimension then we calculate the distance between ith

sub-sequence of T with all the remaining sub-sequences by
using MASS () function . The arguments passed in this function
are the ith sub-sequence of T (i.e. cutTarget), mean and
standard deviation of cutTarget i.e. µT [i], σT [i], complete
time series Q and the mean and standard deviations of all the
sub-sequences of Q i.e. µQ[1 : IdxQ], σQ[1 : IdxQ] respec-
tively (Line 9). The dot product between the cutTarget and
all other sub-sequences of Q are stored in QT . Now from 2nd

sub-sequence onward in each dimension, the distance between
ith sub-sequence and all other sub-sequences are incrementally
calculated by using IndependentSTOMP() function in Line 12
(to get the details of this function, please see Appendix E.1
of our previous article in [13]).

Dim1 Dim2 Dim3

kNN

No. of sub-

sequences

(kNN+1)th matches

Column of

(kNN+1)th

matches

(a)

V1
1 V1

2 V1
3

V2
1 V2

2 V2
3

V3
1 V3

2 V3
3

V4
1 V4

2 V4
3

V5
1 V5

2 V5
3

V6
1 V6

2 V6
3

V7
1 V7

2 V7
3

V8
1 V8

2 V8
3

V9
1 V9

2 V9
3

V10
1 V10

2 V10
3

… … …

 Dim1 Dim2 Dim3

Any one sub-

sequence

kNN

(kNN+1)th matches

(b)

V1
1 V1

2 V1
3

V2
1 V2

2 V2
3

V3
1 V3

2 V3
3

V4
1 V4

2 V4
3

V5
1 V5

2 V5
3

V6
1 V6

2 V6
3

V7
1 V7

2 V7
3

V8
1 V8

2 V8
3

V9
1 V9

2 V9
3

V10
1 V10

2 V10
3

… … …

 Dim1 Dim2 Dim3

Any one sub-

sequence

kNN

(kNN+1)th matches

(c)

Dim1 Dim2 Dim3

(kNN+1)th matches

Sub-sequence 1

Sub-sequence 2

Sub-sequence 3

Sub-sequence 4

…

…

.

(d)

Figure 1: The analysis of computational time of the proposed
algorithm on random-walk and seismic data-sets: (a) The
proposed technique to manage the matching result comes from
two different files in multi core based parallel processing
architecture. (b) The proposed technique to handle the matched
sub-sequence which belongs at the juncture.

Remember that the objective is to calculate the distance
between all the sub-sequence of T against each sub-sequence
(ith) of T and finally to keep top kNN matches of all the
sub-sequences in the variable PT . A visual representation of
PT is shown in Fig. 1a where each row (X axis) represents the
sub-sequences of T and matches along the dimensions of time
series (Y axis) are stored column wise. The kNN matches for
each query and for each dimensions are stored along Z axis.

Hence, the distances between all the sub-sequence of T and
ith sub-sequence are stored along Z axis of PT matrix. We
continue to store like this until i ≤ kNN i.e. k number of sub-
sequences and the corresponding indexes i.e. i is stored in IT
matrix (Line 13− 14 in Obtain kNNMatches() function). The
distance with all the ith sub-sequences, where i > kNN are
stored at kNN + 1th position of PT matrix (Line 15 − 17).
After that the remaining operation is performed in function
FunctionForElsePart 1() in line 18.

In the function FunctionForElsePart 1(), it is first checked
whether i = kNN + 1 or not. That means we perform
the following operations just for a single time i.e. when

5

Algorithm 1: SELFTIMESERIESJOIN(DT , m, kNN)

Input: The target time series data base (DT)
Output: A matrix profile (PTconCat

) and associated matrix profile index (ITconCat
)

1 for iSeries← 1 to length(DT) do
2 T ← [T ,DT [iSeries]] . concatenate individual time series from the data base DT

3 InfoT ← [startIdx, endIdx, fileName] . store the start, end indexes and the file name

4 nT ← length(T); IdxT ← nT −m+ 1
5 for iDim← 1 to d do
6 [µT [1 : IdxT][iDim], σT [1 : IdxT][iDim]]← ComputeMeanStd(T)

7 subSeq1 ← T [1 : 1 +m− 1][1 : d]
8 for iDim← 1 to d do
9 [QT [1 : IdxT][iDim], Dignore[1 : IdxT][iDim]]←MASS(subSeq1[1 : m][iDim], µT [1][iDim], σT [1][iDim],

T , µT [1 : IdxT][iDim], σT [1 : IdxT][iDim])

10 QTinitial ← QT . keeping a copy of the very first dot product
11 [PT , IT , MT , DT , dT , IT]← Obtain kNNMatches(T , IdxT , T , IdxT , µT , σT , µT , σT , d,m, kNN) . call

this function, see below
12 return PT [1 : kNN][1 : IdxT][1 : d]← DT [1 : kNN][1 : IdxT][1 : d]
13 return IT [1 : kNN][1 : IdxT][1 : d]← dT [1 : kNN][1 : IdxT][1 : d]
14 return MT [1 : kNN][1 : IdxT][1 : d]← IT [1 : kNN][1 : IdxT][1 : d]

Function Obtain_kNNMatches(T , IdxT , Q, IdxQ µT , σT , µQ, σQ, d, m, kNN):
/* the following code is executed when i > kNN in Algorithm 4 */

1 PQ ← ((kNN + 1)× IdxQ × d) array . it’s a 3D matrix, initialized with infinity
2 IQ,MQ,DQ, dQ, IQ ← ((kNN + 1)× IdxQ × d) array . these are 3D matrix, initialized with zeros
3 subSeqF lag ← (1× d) vector . it’s a 1D horizontal Boolean vector, initialized with FALSE
4 for i← 1 to IdxQ do
5 for iDim← 1 to d do
6 cutTarget← T [i to (i+m− 1)][iDim] . get target sub-sequence by chopping TconCat

7 if σT [i][iDim] 6= 0 then
8 if subSeqF lag[1][iDim] == FALSE then
9 [QT [1 : IdxQ][iDim], DistcutTarget[1 : IdxQ][iDim]]←MASS(cutTarget, µT [i][iDim],

σT [i][iDim], Q[1 : IdxQ][iDim], µQ[1 : IdxQ][iDim], σQ[1 : IdxQ][iDim]) . apply MASS
algorithm

10 subSeqF lag[1][iDim] == TRUE

11 else
12 [QT [1 : IdxQ][iDim], DistcutTarget[1 : IdxQ][iDim]]← IndependentSTOMP (cutTarget,

µT [i][iDim], σT [i][iDim], QTinitial[i][iDim], Q[1 : nQ][iDim], QT [1 : IdxQ][iDim],
µQ[1 : IdxQ][iDim], σQ[1 : IdxQ][iDim]) . apply MASS algorithm

13 if i <= kNN then
14 PQ[i][1 : IdxQ][1 : d]←

√
DistcutTarget[1 : IdxQ][1 : d]; IQ[i][1 : IdxQ][1 : d]← i

15 else
16 PQ[kNN + 1][1 : IdxQ][1 : d]←

√
DistcutTarget[1 : IdxQ][1 : d]

17 IQ[kNN + 1][1 : IdxQ][1 : d]← i
18 [PQ, DQ, dQ, IQ, cumDistAll]← FunctionForElsePart 1(i, IdxQ, PQ, DQ, dQ, IQ, kNN) .

call this function, see below
19 [DQ, dQ, IQ] ← FunctionForElsePart 3(IdxQ, cumDistAll, DQ, dQ, IQ, kNN) . call this

function, see below

20 return PQ, IQ, MQ, DQ, dQ, IQ

6

kNN

All sub-

sequences

(kNN+1)th match

Each sub-

sequence

(a)

kNN

All sub-

sequences

(kNN+1)th match

Each sub-

sequence

…

…

.

(b)

Figure 2: The analysis of computational time of the proposed
algorithm on random-walk and seismic data-sets: (a) The
proposed technique to manage the matching result comes from
two different files in multi core based parallel processing
architecture. (b) The proposed technique to handle the matched
sub-sequence which belongs at the juncture.

i = kNN + 1. We iterate over all the sub-sequence of
T and for each sub-sequence, the (kNN + 1) number of
matches for all the dimensions are stored in SQ variable in
Line 3. The kNN + 1 number of matches for one such sub-
sequence is illustrated in Fig. 1c where the rows of this matrix
represents kNN + 1 number of matches and these matches
are arranged along the columns of each dimensions. Now the
matrix SQ is column wise sorted in descending order (i.e.
along the dimensions) and the sorted distances are stored in
distSortQ and the corresponding sorted indexes are stored in
indxSortQ (Line 4). These sorted distances i.e. distSortQ
and the sorted indexes (i.e. reshuffling of dimensions as the
sorting was performed along dimensions or columns) i.e.
indxSortQ are stored in DQ and dQ array respectively (line
5-6). Whereas, by using these sorted dimension wise indexes
i.e. indxSortQ, we iterate over all the kNN + 1 number of
matches and the indexes of these matches are rearranged from
IQ array into IQ array (Line 6-9). After obtaining the sorted
distances in DQ array, we perform a cumulative sum along
the dimensions by using two 3D matrices named as cumDist
and cumDistAll respectively (Line 10). These matrices can
be imagined as the illustration shown in Fig. 2a. Now, we
iterate over all the sub-sequences of T and all the available
dimensions (i.e. along d dimensions) in Line 11 and 12 to add
the distance values from DQ matrix. Then in cumDistAll
matrix, the values are saved by dividing the elements of
cumDist matrix by dimension’s index i.e. iDim. In this way,

we are actually iteratively summing up the sorted distances
from DQ matrix in cumDist array followed by division
(in Line 13) by the dimension’s index to actually diminish
the contribution (denominator increases in each iteration of
iDim) of distance values (which are arranged in increasing
order along the columns after dimension-wise sorting) in each
iterations.

Hence, the cumDistAll matrix (illustration of this matrix is
shown in Fig. 2a) will store the single distance value for each
sub-sequence which is computed through the contribution of
all distances along the dimensions (or columns) of the sub-
sequence from DQ matrix. After obtaining the cumDistAll
matrix, we again iterate over all the sub-sequences and perform
a priority queue based heap sorting on kNN number of
elements. By using the sorted indexes i.e. heapSortIdxs, we
rearrange the cumDistAll matrix in Line 16. The property of
heap based sorting is that it rearrange the elements in a way
so that the maximum value will appear at the 1st position of
the array. Based on these sorted indexes, the DQ, dQ, IQ
arrays are updated by using UpdateIndex() function (line 17).
(the detail of this function is explained later)

The above defined all these operations are performed only
once when i = kNN+1 otherwise we will enter into the else
part in Line 18-19 of the function FunctionForElsePart 1().
The operations of the else part are performed by using the
function FunctionForElsePart 2(). In this function, all the
columns at (kNN + 1)th location is taken into the MkNN+1

variable in Line 1 (see the illustration of all the columns at
(kNN + 1)th location is shown in Fig. 1d). After obtaining
these columns at (kNN + 1)th location, these ones are sorted
column-wise (in descending order) and the sorted distances
are stored in distTempkNN+1 and sorted indexes are stored
in indxDimkNN+1 in Line 2. Like before the DQ, dQ,
IQ arrays are updated by using indxDimkNN+1. Then like
before, we perform a cumulative sum along the dimensions
by using two 3D matrices named as cumDistTemp and
cumDistAll respectively (Line 7). We iterate over all the
available dimensions (i.e. along d dimensions) in Line 8-10
and add the distance values from dimSortDistQ matrix. Then
in cumDistAll matrix, the values are saved by dividing the
elements in cumDistTemp matrix by dimension index iDim.
From this function, the updated DQ, dQ, IQ and cumDistAll
matrix are returned.

Hence, we finish executing the FunctionForElsePart 1()
function and we return to Line 18 of Obtain kNNMatches()
function. From there, we call the function FunctionForElseP-
art 3(). The task of this function is to put the newly computed
distance values at the kNN + 1th location of PQ matrix and
compare these values with the ones exists at the 1st location of
PQ matrix (such an illustration is shown in Fig. 2b, where the
values at kNN+1th column are compared with the ones at 1st

column. The values at kNN+1th column are marked by violet
color and values at the 1st column are marked in blue). To do
that, we compare IdxQ number of values at the 1st column
of cumDistAll array with the ones at kNN + 1th column in
Line 1 of FunctionForElsePart 3() function. This comparison
gives the index of elements in cumDistAll array whose value
at 1st column are greater than the values at kNN+1th column.

7

Function FunctionForElsePart_1(i, IdxQ, PQ, DQ, dQ, IQ, kNN):
/* the following code is executed when i > kNN in Algorithm 4 */

1 if i == kNN + 1 then
2 for p← 1 to IdxQ do
3 SQ[1 : kNN + 1][1 : d]← PQ[1 : kNN + 1][p][1 : d] . get the (kNN + 1) number of matches of each query

sub-sequences
4 distSortQ[1 : kNN +1][1 : d], indxSortQ[1 : kNN +1][1 : d]← sortColWise (SQ[1 : kNN +1][1 : d])

. sort the distance values column wise i.e. dimension wise and store the sorted distances and reshuffled indexes of the
dimensions

5 DQ[1 : kNN + 1][p][1 : d]← distSortQ[1 : kNN + 1][1 : d]
dQ[1 : kNN + 1][p][1 : d]← indxSortQ[1 : kNN + 1][1 : d]

6 for iNN ← 1 to kNN + 1 do
7 tempIndxD[1 : d]← indxSortQ[iNN][1 : d] . pick d number of sorted indexes of dimensions, stored in

each row of indxSortQ array through iterating over kNN + 1 number of rows or stored matches
8 for iDim← 1 to d do
9 IQ[iNN][p][iDim]← IQ[iNN][p][tempIndxD[iDim]] . by using the sorted dimensions in

(”tempIndxD[iDim]”), get the original sub-sequence index. Then copy that in ”IQ” array to rearrange
matching sub-sequence indexes

10 cumDist← ((kNN + 1)× IdxQ × 1) array; cumDistAll← ((kNN + 1)× IdxQ × 1) array for p← 1
to IdxQ do

11 for iDim← 1 to d do
12 cumDist[1 : kNN + 1][p][1]← cumDist[1 : kNN + 1][p][1] + DQ[1 : kNN + 1][p][iDim] . for each

query sub-sequence, we are iteratively summing up the distances in each dimensions
13 cumDistAll[1 : kNN + 1][p][1]← cumDist[1 : kNN + 1][p][1]/iDim . in each iteration, we divide

by the dimension’s index i.e. ”iDim”

14 for p← 1 to IdxQ do
15 heapSortIdxs[1 : kNN]← BuildMaxHeap(cumDistAll[1 : kNN][p][1], kNN) . for each query

sub-sequences, sort the top kNN elements by building a max-heap based structure
16 cumDistAll[1 : kNN][p][1 : d]← cumDistAll[heapSortIdxs[1 : kNN]][p][1 : d]
17 [DQ, dQ, IQ]← UpdateIndex(1, kNN, heapSortIdxs[1], heapSortIdxs[kNN], p, DQ, dQ, IQ)

18 else
19 [PQ, DQ, dQ, IQ, cumDistAll]← FunctionForElsePart 2(IdxQ, PQ, cumDistAll, DQ, dQ, IQ) .

call this function when i > (kNN + 1)

20 return PQ, DQ, dQ, IQ, cumDistAll

After obtaining these indexes (i.e. idxMaxQ ∈ 1....IdxQ),
the values at the 1st column at these indexes/rows in DQ,
dQ, IQ arrays are exchanged with the values at kNN + 1th

column by using the UpdateIndex() function (Line 5, to
visualize the scenario, see Fig. 1a and imagine that certain
rows from kNN + 1th column are exchanged with the same
rows in 1st column). The values at kNN + 1th column of
cumDistAll array are also exchanged with the ones at 1st

column at idxMaxQ rows. Then again the heap based sorting
is performed on updated cumDistAll array (Line 6) and
based on the sorted indexes (heapSortIdxs), the top kNN
elements of cumDistAll array are rearranged. Then again the
DQ, dQ, IQ arrays are updated by using the sorted indexes
heapSortIdxs. Finally, the DQ, dQ, IQ and cumDistAll
arrays are returned from this function.

The UpdateIndex() function is simply used to update the a
range of values in DQ, dQ, IQ arrays. This function copies the

values of an array from location stRiD1 to enRiD1 into the
location stLeD1 to enLeD1 of the same array at the index,
mentioned by indD2.

5.2 kNN similarity search for multi-dimensional time
series using AAMP algorithm
The AAMP algorithm (explained in detail in) is also capable to
perform similarity search by incremental distance calculation
and the advantage is that unlike STOMP based technique,
it uses classical euclidean distance for similarity search. In
the following section, we have explained the way to use this
algorithm for the similarity search for multi-dimensional data.
The pseudo code of the proposed algorithms is shown in
Algorithm 2. The length of T and total number of possible
sub-sequence of T are calculated in nT and IdxT variable
respectively (Line 1 − 2). The 3D matrices PQ, IQ, MQ,
DQ, dQ, IQ are initialized with ∞ and zeros respectively. In

8

Function FunctionForElsePart_2(IdxQ, PQ, cumDistAll, DQ, dQ, IQ):
/* following code is executed when i > kNN in FunctionForElsePart_1 () */

1 MkNN+1[1 : IdxQ][1 : d]← PQ[1 + kNN][1 : IdxQ][1 : d] . pick only (kNN + 1)th entry of all the query
sub-sequences and store it in MkNN+1 array

2 distTempkNN+1[1 : IdxQ][1 : d], indxDimkNN+1[1 : IdxQ][1 : d]← sortColWise (MkNN+1[1 : IdxQ][1 : d])
. sort the distance values column wise i.e. dimension wise and store the sorted distances and reshuffled indexes of the
dimensions; same as Line 3 of ”FunctionForElsePart 1”

3 DQ[kNN + 1][1 : IdxQ][1 : d]← distTempkNN+1[1 : IdxQ][1 : d] . storing these sorted distances
4 dQ[kNN + 1][1 : IdxQ][1 : d]← indxDimkNN+1[1 : IdxQ][1 : d] . storing these sorted indexes
5 for p← 1 to IdxQ do
6 IQ[kNN + 1][p][1 : d]← IQ[kNN + 1][p][indxDimkNN+1[p][1 : d]] . by using the sorted index of dimension in

(”indxDimkNN+1”), get the original sub-sequence index stored at that location. Then copy that in ”IQ” array to
rearrange matching sub-sequence indexes

7 cumDistTemp← ((kNN + 1)× IdxQ × 1) array; cumDistAll← ((kNN + 1)× IdxQ × 1) array . it’s a
3D array, initialized with zeros

8 for iDim← 1 to d do
9 cumDistTemp[1][1 : IdxQ][1]← cumDistTemp[1][1 : IdxQ][1]+dimSortDistQ[kNN+1][1 : IdxQ][iDim]

. the (kNN + 1)th entry of all the query sub-sequence are iteratively summed up for all the dimensions
10 cumDistAll[kNN + 1][1 : IdxQ][1]← cumDistTemp[1][1 : IdxQ][1]/iDim . in each iteration, we divide by

the dimension’s index i.e. ”iDim”

11 return PQ, DQ, dQ, IQ, cumDistAll

Function FunctionForElsePart_3(IdxQ, cumDistAll, DQ, dQ, IQ, kNN):
/* following code is executed from Line 19 of Obtain_kNNMatches() */

1 idxMaxQ ← findCondition (cumDistAll[1][1 : IdxQ]][1] > cumDistAll[kNN + 1][1 : IdxQ]][1]) . find the
indexes of query sub-sequences where the distance stored at 1st location is bigger than the distances at
(kNN + 1)th location

2 if notEmpty(idxMaxQ) then
3 for iIndx← 1 to length(idxMaxQ) do
4 v← idxMaxQ(iIndx) . get the indexes of such query sub-sequences where the condition in Line 10 is

satisfied
5 [DQ, dQ, IQ]← UpdateIndex(1, 1, kNN + 1, kNN + 1, v, DQ, dQ, IQ) . call this function to

update the DQ,dQ and IQ array
6 cumDistAll[1][v][1 : d]← cumDistAll[kNN + 1][v][1 : d] . replace the (kNN + 1)th distance values by

the ones at 1st location for vth query sub-sequences
7 heapSortIdxs[1 : kNN]← BuildMaxHeap((cumDistAll[1 : kNN][v][1]), kNN) . for each query

sub-sequences, sort kNN + 1 elements by building a max-heap based structure
8 cumDistAll[1 : kNN][v][1]← cumDistAll[heapSortIdxs[1 : kNN][v][1] . rearrange ”cumDistAll”

array by using the sorted indexes i.e. ”heapSortIdxs”

9 [DQ, dQ, IQ]← UpdateIndex(1, kNN, heapSortIdxs[1], heapSortIdxs[kNN], v, DQ, dQ, IQ) .
call this function to update the DQ,dQ and IQ array

10 return DQ, dQ, IQ, cumDistAll

Function UpdateIndex(stLeD1, enLeD1, stRiD1, enRiD1, indD2):
/* this function is used to update set of elements in the array */

1 DQ[stLeD1 : enLeD1][indD2][1 : d]← DQ[stRiD1 : enRiD1] [indD2][1 : d] . replace values at indexes from
stLeD1 to enLeD1 by the values at indexes from stRiD1 to enRiD1 for indD2th query sub-sequence

2 dQ[stLeD1 : enLeD1][indD2][1 : d]← dQ[stRiD1 : enRiD1] [indD2][1 : d]
3 IQ[stLeD1 : enLeD1][indD2][1 : d]← IQ[stRiD1 : enRiD1] [indD2][1 : d]
4 return DQ, dQ, IQ

9

Algorithm 2: SELF AAMP JOIN(DT , m, kNN)

Input: The target time series data base (DT) and query time series (Q)
Output: A matrix profile (PQ) and associated matrix profile index (IQ)

1 nT ← length(T); excZone← m
2 . get the length of time series T and Q

2 IdxsT ← nT −m+ 1 . get the total number of sub-sequences in Q
3 PT ← ((kNN + 1)× IdxT × d) array . it’s a 3D matrix, initialized with infinity
4 IT ,MT ,DT , dT , IT ← ((kNN + 1)× IdxT × d) array . these are 3D matrix, initialized with zeros
5 iCnt← 1
6 for iJump← 1 to (nT −m) do
7 if iJump > excZone then
8 KT ← (IdxT × d) array ST ← (IdxT × d) array
9 for iDim← 1 to d do

10 distV al←
∑

(T [iJump+ 1 : (iJump+ 1) +m− 1][iDim]− T [1 : 1 +m− 1][iDim])2 . compute
distance with 1st query sub-sequence and target sub-sequence

11 distV al← |distV al|
12 KT [1][iDim]← distV al; KT [iJump+ 1][iDim]← distV al
13 ST [1][iDim]← iJump+ 1; ST [iJump+ 1][iDim]← 1; E← nT −m− iJump+ 1

14 for ii← 2 to E do
15 tStart← iJump+ ii
16 for iDim← 1 to d do
17 part1 ← (T [ii− 1][iDim]− T [tStart− 1][iDim])2

18 part2 ← (T [ii+m− 1][iDim]−Q[tStart+m− 1][iDim])2

19 distV al←
∑
distV al − part1 + part2 . compute the incremental distance

20 distV al← |distV al| ; KT [1][iDim]← distV al; KT [tStart][iDim]← distV al . store the square
rooted distance

21 ST [1][iDim]← tStart; ST [tStart][iDim]← ii . store the index

22 if iCnt <= kNN then
23 PQ[iCnt][1 : IdxT][1 : d]←

√
KT [1 : IdxT][1 : d] ; IQ[iCnt][1 : IdxT][1 : d]← ST [1 : IdxT][1 : d]

24 else
25 PQ[kNN + 1][1 : IdxT][1 : d]←

√
KT [1 : IdxT][1 : d] . store the distance

26 IQ[kNN + 1][1 : IdxT][1 : d]← ST [1 : IdxT][1 : d] . store the sub-sequence’s indexes
27 [PT , DT , dT , IT , cumDistAll]← FunctionForElsePart 1(i, IdxT , PT , DT , dT , IT , kNN)
28 [DT , dT , IT]← FunctionForElsePart 3 (IdxT , cumDistAll, DT , dT , IT , kNN) . call this

function

29 iCnt+ +

30 return PT [1 : kNN][1 : IdxT][1 : d]← DT [1 : kNN][1 : IdxT][1 : d] . 3D array of Matrix Profile
31 return IT [1 : kNN][1 : IdxT][1 : d]← dT [1 : kNN][1 : IdxT][1 : d] . 3D array of Index profile
32 return MT [1 : kNN][1 : IdxT][1 : d]← IT [1 : kNN][1 : IdxT][1 : d] . 3D array of dimensions

line 6, we iteratively jump nT −m number of times and for
each jump, we create two arrays KT and ST and initialized
them with zeros. Then we calculate the classical euclidean
distance between the 1st sub-sequence and the iJump + 1th

sub-sequence in line 10 by iterating over all the dimensions
(in line 9). The calculated distance value (distV al) is then
stored at 1st and iJump+1th indexes of KT matrix and along
with that the indexes are also saved in ST matrix. After that
the distance between other sub-sequences in each dimensions
are iteratively and incrementally calculated in Line 14-21.
In each iteration of Line 14, we incrementally calculate the
distance between iith and tStartth sub-sequence. In line 17,
we operate on the 1st elements of two previous sub-sequences
i.e. ii − 1th and tStart − 1th sub-sequences (remember ii

starts from 2) whereas in line 18, we operate over the last
elements of current sub-sequences i.e. iith and tStartth sub-
sequences. Then the distance value is calculated in Line 19 and
it is stored in KT variable at the iith and tStartth indexes (line
20). The corresponding indexes are also stored in ST variable
in Line 21. Remember that the objective is to calculate the
distance between all the sub-sequence of T against every sub-
sequence of T and finally keep top kNN matches of all the
sub-sequences in the variable PT . We can visualize the same
pictorial representation of PT , shown in Fig. 1a where each
row (X axis) represents the sub-sequences of T and matches
along the dimensions of time series (Y axis) are stored in
column wise. The kNN matches for each query is as usual
stored along Z axis.

10

We continue to store the distances like this until iCnt ≤
kNN i.e. until k number of diagonal shifts and the corre-
sponding indexes. For sub-sequences index: iCnt > kNN on-
wards are stored in kNN + 1th positions of PT matrix (Line
25-26). After that the remaining operation is performed in
function FunctionForElsePart 1() (which is explained before).
After completing the execution of FunctionForElsePart 1()
function, we call the function FunctionForElsePart 3() in
Line 28 to perform the remaining operations. At the end, the
computed matrices i.e. PQ, IQ and MQ are returned as the
results.

5.3 kNN similarity search for multi-dimensional time
series using ACAMP algorithm

The ACAMP algorithm (explained in detail in) is also capable
to perform similarity search by incremental distance calcula-
tion and like STOMP based technique, it uses z-normalized
euclidean distance for the similarity search. But this algorithm
is computationally faster than the STOMP technique. In the
following section, we have explained the way to use this
algorithm for the similarity search for multi-dimensional data.
The pseudo code of the proposed algorithms is shown in
Algorithm 3. The length of T and total number of possible
sub-sequence of T are calculated in nT and IdxT variable
respectively (Line 1). Then the mean and standard deviation of
all the sub-sequences of T for all the existing dimensions are
calculated in Line 2−3 by using ComputeMeanStd() function
(to get the details of this function, please see Appendix B
of our previous article in [13]). Then the 3D matrices i.e.
PQ, IQ, MQ, DQ, dQ, IQ are initialized with ∞ and zeros
respectively.

In line 5, we iteratively jump nT − m number of times
and for each jump, we create three arrays KT and ST and
F then initialize them with zeros. Then we calculate the z-
normalized euclidean distance between the 1st sub-sequence
and the iJump + 1th sub-sequence in line 11 by iterating
over all the dimensions in line 8. The calculated distance value
(distV al) is then stored at 1st and iJump+1th indexes of KT
matrix and along with that the indexes are also saved in ST
matrix (line 13). The dot product between two sub-sequences
i.e. 1st and iJump+ 1th sub-sequences are stored in P (line
11) which is saved in F (line 13) for future computations.
After that the distance between other sub-sequences in each
dimensions are iteratively calculated in line 15-21. For each
iteration in line 15, we incrementally calculate the distance
between iith and tStartth sub-sequence. In line 18, we
operate on the 1st elements of two previous sub-sequences i.e.
ii − 1th and tStart − 1th sub-sequences (remember ii starts
from 2) whereas in line 19, we operate over the last elements
of current sub-sequences i.e. iith and tStartth sub-sequences.
Then the z-normalized distance value is calculated in line 21
by using pearson correlation coefficient based z-normalized
distance calculation technique and it is stored in KT variable
at the iith and tStartth indexes (line 22). The corresponding
indexes are also stored in ST variable in line 23.

We continue to store the distances like this until iCnt ≤
kNN i.e. until k number of diagonal shifts and the corre-

sponding indexes. For sub-sequences index: iCnt > kNN on-
wards are stored in kNN + 1th positions of PT matrix (Line
27-28). After that the remaining operation is performed in
function FunctionForElsePart 1() (which is explained before).
After completing the execution of FunctionForElsePart 1()
function, we call the function FunctionForElsePart 3() in
line 30 to perform the remaining operations. At the end, the
computed matrices i.e. PQ, IQ and MQ are returned as the
results (line 32-34).

6 CONSTRAINED SEARCH
As introduced in [1], that there are two kinds of constraints
exists in multi-dimensional motifs searches: exclusion and
inclusion. The exclusion puts a constraint to “blacklist” a
predefined number of dimensions from the calculation of
search which simply means that no motifs can span into
the excluded dimensions. Whereas, the term inclusion puts
a constraint which creates an obligation to include a set of
dimensions during the computation of motif, hence all motifs
must span these pre-defined dimensions. Like the mSTAMP
algorithm, the implementation of exclusion can be simply
achieved by removing the pre-defined dimensions. Whereas,
the inclusion is achieved by moving the distance computed by
using whitelisted dimensions up-to the front then in the same
way a column wise-ascending sort is performed.

There are several application of this constrained search
property in various domains. In [1], the authors has provided
a nice example in the medical domain where for sleep study,
the cardiologist and neurologist would need to exclude certain
dimensions of data. Other domain experts may have the
similar kinds of requirements (including and/or excluding
some dimensions) for the analysis of time series signal in their
respective domains.

7 UNCONSTRAINED SEARCH
Sometime it is possible that the user knows (even if ap-
proximately) the expected motif’s dimensionality of patterns
in her domain. In that case it is easier and we can simply
put a limit on number of dimensionality to be used during
the computation of distance for motif search. However, it
is also possible that the user has little idea regarding the
reasonable dimensions of the motifs in the time series. In such
cases, it is needed to perform an unconstrained search where
the constrained such as inclusion & exclusion of dimensions
and number of dimensions to be considered as motifs are
not applied. Hence, like mSTAMP algorithm, our proposed
approach is also able to consider multidimensional motif on
k dimensions out of the full d dimensional space; where
k << d and k is an user given input. Hence, like mSTAMP
algorithm, here our objective is to search for motifs in all
possible dimensions of a given multi-dimensional time series
and finally the objective is able to select best motif out of all
possible combination of k dimensions.

8 EXPLORING ANYTIME PROPERTY OF
MULTI-DIMENSIONAL MOTIFS DISCOVERY
ALGORITHMS

11

Algorithm 3: SELF ACAMP JOIN(DT , Q, m)

Input: The target time series data base (DT)
Output: A matrix profile (PQ) and associated matrix profile index (IQ)

1 nT ← length(T) IdxsT ← nT −m+ 1

2 for iDim← 1 to d do
3 [µT [iDim], σT [iDim]]← ComputeMeanStd(T)

4 PT ← ((kNN + 1)× IdxT × d) array; IT ,MT ,DT , dT , IT ← ((kNN + 1)× IdxT × d) array

5 for iJump← 0 to (nT −m) do
6 if iJump > excZone then
7 KT ← (IdxT × d); ST ← (IdxT × d); F ← (1× d) array
8 for iDim← 1 to d do
9 qSubSeq ← T [1 : 1 +m− 1][iDim]

10 tSubSeq ← T [iJump+ 1 : (iJump+ 1) +m− 1][iDim]
11 [distV al,P]← CalcZnormDist (qSubSeq, tSubSeq,m, µT [1][iDim],

σT [1][iDim], µT [1][iDim], σT [1][iDim]); distV al←
√
|distV al|

12 KT [1][iDim]← distV al; KT [iJump+ 1][iDim]← distV al
13 ST [1][iDim]← iJump+ 1; ST [iJump+ 1][iDim]← 1; F [1][iDim]← P

14 E← nT −m− iJump+ 1
15 for ii← 2 to E do
16 tStart← iJump+ ii
17 for iDim← 1 to d do
18 part1 ← (T [ii− 1][iDim]− T [tStart− 1][iDim])
19 part2 ← (T [ii+m− 1][iDim]− T [tStart+m− 1][iDim])
20 F [1][iDim]← F [1][iDim]− part1 + part2 . compute the incremental distance

21 distV al← 2 ×
[
m − P − (m × µT [ii][iDim] × µT [tStart][iDim])

σT [ii][iDim]×σT [tStart][iDim]

]
; distV al← |distV al|

22 KT [ii][iDim]← distV al; KT [tStart][iDim]← distV al
23 ST [ii][iDim]← tStart; ST [tStart][iDim]← ii

24 if iCnt <= kNN then
25 PT [iCnt][1 : IdxT][1 : d]←

√
KT [1 : IdxT][1 : d]

26 IT [iCnt][1 : IdxT][1 : d]← ST [1 : IdxT][1 : d]

27 else
28 PT [kNN + 1][1 : IdxT][1 : d]←

√
KT [1 : IdxT][1 : d] . store the distance

29 IT [kNN + 1][1 : IdxT][1 : d]← ST [1 : IdxT][1 : d] . store the sub-sequence’s indexes
30 [PT ,DT , dT , IT , dAll]← FunctionForElsePart 1(iCnt, IdxT , PT ,DT , dT , IT , kNN)
31 [DT , dT , IT]← FunctionForElsePart 3(IdxT , dAll, DT , dT , IT , kNN)

32 iCnt+ +

33 return PT [1 : kNN][1 : IdxT][1 : d]← DT [1 : kNN][1 : IdxT][1 : d] . 3D array of Matrix Profile
34 return IT [1 : kNN][1 : IdxT][1 : d]← dT [1 : kNN][1 : IdxT][1 : d] . 3D array of Index profile
35 return MT [1 : kNN][1 : IdxT][1 : d]← IT [1 : kNN][1 : IdxT][1 : d] . 3D array of dimensions

Here in this section, we will talk about the ways to perform
anytime motifs discovery of the above algorithms.

9 INCREMENTALLY MAINTAINING THE MULTI-
DIMENSIONAL MATRIX PROFILE

Here in this section, we will talk about the algorithms or the
modification of the above mentioned algorithms for handling
streaming data of a time series.

12

10 EXPERIMENTAL EVALUATION

10.1 Test of Scalability
10.1.1 Computational time v/s sub-sequence length
10.1.2 Computational time v/s time series length
10.1.3 Computational time v/s kNN
10.1.4 Computational time v/s dimensions
10.2 Qualitative Analysis
10.2.1 Case study on motion capture data
10.2.2 Case study on music processing
10.2.3 Case study on electrical load management
10.2.4 Case study on physical activity monitoring

11 CONCLUSION

ACKNOWLEDGMENT

We greatly acknowledge the funding from Safran Data Ana-
lytics Lab. The authors are grateful to Inria Sophia Antipolis
- Méditerranée ”Nef” computation cluster for providing re-
sources and support.

REFERENCES

[1] C.-C. M. Yeh, N. Kavantzas, and E. Keogh, “Matrix Profile
VI: Meaningful Multidimensional Motif Discovery,” 2017 IEEE
International Conference on Data Mining (ICDM), pp. 565–574, 2017.
[Online]. Available: http://ieeexplore.ieee.org/document/8215529/ 2, 3,
10

[2] B. Hu, Y. Chen, J. Zakaria, L. Ulanova, and E. Keogh, “Classification of
multi-dimensional streaming time series by weighting each classifier’s
track record,” in Proceedings - IEEE International Conference on Data
Mining, ICDM, 2013. 2

[3] C. C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau,
Z. Zimmerman, D. F. Silva, A. Mueen, and E. Keogh, Time series joins,
motifs, discords and shapelets: a unifying view that exploits the matrix
profile. Springer US, 2018, vol. 32, no. 1. 2

[4] B. Campana, T. Rakthanmanon, G. Batista, A. Mueen, Q. Zhu, E. Keogh,
B. Westover, and J. Zakaria, “Searching and mining trillions of time
series subsequences under dynamic time warping,” p. 262, 2012. 2

[5] A. Mueen, H. Hamooni, and T. Estrada, “Time Series Join on Subse-
quence Correlation,” Proceedings - IEEE International Conference on
Data Mining, ICDM, vol. 2015-Janua, no. January, pp. 450–459, 2014.
2

[6] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and E. Keogh,
“Matrix Profile XI: SCRIMP++: Time Series Motif Discovery at Inter-
active Speeds,” in 2018 IEEE International Conference on Data Mining
(ICDM). IEEE, nov 2018, pp. 837–846. 2

[7] A. Balasubramanian, J. Wang, and B. Prabhakaran, “Discovering Mul-
tidimensional Motifs in Physiological Signals for Personalized Health-
care,” IEEE Journal on Selected Topics in Signal Processing, vol. 10,
no. 5, pp. 832–841, 2016. 3

[8] E. Berlin and K. Van Laerhoven, “Detecting leisure activities with
dense motif discovery,” UbiComp’12 - Proceedings of the 2012 ACM
Conference on Ubiquitous Computing, pp. 250–259, 2012. 3

[9] A. Vahdatpour, N. Amini, and M. Sarrafzadeh, “Toward unsupervised
activity discovery using multi-dimensional motif detection in time
series,” IJCAI International Joint Conference on Artificial Intelligence,
pp. 1261–1266, 2009. 3

[10] Y. Tanaka, K. Iwamoto, and K. Uehara, “Discovery of time-series
motif from multi-dimensional data based on MDL principle,” Machine
Learning, vol. 58, no. 2-3, pp. 269–300, 2005. 3

[11] D. Minnen, C. Isbell, I. Essa, and T. Starner, “Detecting subdimemslomal
motifs: An efficient algorithm for generalized multivariate pattern dis-
covery,” Proceedings - IEEE International Conference on Data Mining,
ICDM, no. October, pp. 601–606, 2007. 3

[12] Y. Gao and J. Lin, “Discovering subdimensional motifs of different
lengths in large-scale multivariate time series,” Proceedings - IEEE
International Conference on Data Mining, ICDM, vol. 2019-Novem,
pp. 220–229, 2019. 3

[13] T. Mondal, R. Akbarinia, and F. Masseglia, “Matrix Profile Based kNN
Search over Large Time Series,” vol. 00, pp. 1–37, 2020. [Online].
Available: http://arxiv.org/abs/1901.0570812 4, 10, 13

Tanmoy Mondal did his Ph.D from Ecole Poly-
technique de l’Université de Tours (EPU), France
in 2015. Before his PhD, he worked at sev-
eral industries and premier R&D centers as a
researcher. Currently, he is doing Post-Doc at
IMT Atlantique, France. His research interests
include time series analysis, pattern recognition,
image processing, and computer vision.

Reza Akbarinia is a research scientist at In-
ria. He received his Ph.D. degree in Computer
Science from the University of Nantes in 2007.
His research focuses on data management and
analysis in large-scale distributed systems (P2P,
grid, Cloud) and data privacy. He has authored
and co-authored two books and several techni-
cal papers in main DB conferences and journals.
He has served as PC member in several confer-
ences, such as SIGMOD, VLDB, ICDE, EDBT,
CIKM, etc.

Florent Masseglia is a scientific researcher in
computer science at Inria since 2002. He works
in Montpellier, in the Zenith team of Inria, on
the analysis of very large scientific data. These
data, derived from observations, experiments
and simulation are indeed complex, often very
large, and are at the heart of important issues to
better understand the studied domains (agron-
omy, biology, medicine).

http://ieeexplore.ieee.org/document/8215529/
http://arxiv.org/abs/1901.0570812

13

SUPPLEMENTARY MATERIALS (SM)

SM: .1 kNN similarity search for independent join

Matching of two independent multi-dimensional time series
named as Query (Q) and Target time series (T) are performed
in the following manner. Let’s consider an example where in
a time series database DT , there are x number of time series
of different lengths : {t1, t2, t3,, tx} ∈ DT . In another time
series data base DQ, let’s say there are y number of time series
exits, where x >>> y. The goal is to find closest match of all
the sub-sequences in Q, where, Q is any particular time series
from the database DQ and the matches should come from the
time series which exits in database DT . By concatenating all
the time series in DT , we can obtain a big time series T which
is named as target time series. The following Algorithm 4
is proposed which basically computes the distance of each
sub-sequence of T with all the sub-sequences of query time
series Q and based on this repetitive process, we find the best
matches of each query sub-sequences.

The pseudo code of the proposed algorithms is shown in
Algorithm 4. All the individual time series from database
DT are sequentially concatenated to form a concatenated
time series T (Line 2) and the information e.g. start and
end indexes/locations of an individual time series when it is
concatenated to generate T are saved in InfoT . Also the file
name or index of the individual time series are also saved
in InfoT . The length of T and total number of possible
sub-sequence of T are calculated in nT and IdxsT variable
respectively (Line 4). Along with that the length of time series
Q and number of total sub-sequences in Q are also calculated
in nQ and IdxsQ variable also computed in line 4. The mean
(µT) and standard deviation (σT) of all the sub-sequences
of T and the mean (µQ) and standard deviation (σQ) of all
the sub-sequences of Q are calculated by iterating over the
dimensions of T (Line 5 − 6). After obtaining the very first
sub-sequence of Q in Line 7, the distance between first sub-
sequence and all the other sub-sequences are calculated in
Line 9 by using the function MASS() (to get the details of
this function, please see Appendix C of our previous article
in [13]). The arguments passed in this function are the fist
sub-sequence of T (i.e. querySubSeq1), mean and standard
deviation of querySubSeq1 i.e. µQ[1], σQ[1], complete time
series T and the mean and standard deviations of all the sub-
sequence of T i.e. µT [1 : IdxT], σT [1 : IdxT] respectively.
The dot product between the querySubSeq1 and all other sub-
sequences of T is stored in QTinitial (Line 10). In Line 11,
we perform the remaining operations in Obtain kNNMatches()
function. The Obtain kNNMatches() function is explained in
detail in Section 5.1. The arguments passed in this function
are; the complete time series T , total number of sub-sequences
in T i.e. IdxT , the query time series i.e. Q, total number of
sub-sequences in Q i.e. IdxQ, mean and standard deviation
of all the sub-sequences in all dimensions T i.e. µT and σT ,
mean and standard deviation of all the sub-sequences in Q i.e.
µQ σQ and total number of dimensions i.e. d. At the end, the
computed matrices i.e. PQ, IQ and MQ are returned as the
results.

SM: I KNN SIMILARITY SEARCH FOR INDE-
PENDENT JOIN USING AAMP ALGORITHM

In this section, we explain the technique to perform the
similarity search between Query (Q) and Target time series
(T) like the one is performed in Appendix SM: .1. The
algorithm initiates as usual like the Algorithm 4. Line 1-4
is self explanatory and has been described before. In line 6,
we iteratively perform diagonal jump of IdxsT − 1 number
of times and for each jump, we calculate the distance between
subsequent query and target sub-sequences. For example,
when iJump = 0 (i.e. diagonal jump equals to zero), the
distance is computed between QSSq1 v/s TSSq1 followed
by distance computation between QSSq2 v/s TSSq2 etc.
(follow the yellow color cells and # symbol in Fig. 3).
Then for iJump = 1, the distance is computed between
QSSq1 v/s TSSq2 followed by distance computation
between QSSq2 v/s TSSq3 etc. (follow the green color cells
and $ symbol in Fig. 3) and so on. In this way, iJump iterate
until nT − m i.e we perform nT − m numbers of diagonal
jumps. But until nT −nQ numbers of diagonal jumps (a visual
example is shown in Fig. 3 by considering IdxsT = 21 and
IdxsQ = 8), we can compute the distance between all the
subsequent query sub-sequences and corresponding target sub-
sequences (follow maroon color cells and æ symbol in Fig. 3
where distances are calculated between QSSq1 v/s TSSq14,
QSSq2 v/s TSSq15 etc.). If we take any more jumps
after that then we can’t compute the distance between all the
query sub-sequences and corresponding target sub-sequences.
This rationale is implemented in line 7-10 of Algorithm 5.
If iJump ≤ (nT − nQ) then E is equal to nQ that means
we can compute distance for all the query sub-sequences
otherwise E is taken as IdxsT − iJump which means we
can calculate distance for the number of query sub-sequences,
equals to the remaining number of sub-sequences, obtained
by subtracting/removing the already taken number of jumps
(iJumps) from total number of target sub-sequences (IdxsT)
in each iteration (follow the bottom yellow colored triangular
regions in Fig. 3).

In line 11, we check whether iJump + 1 ≤ kNN then
pIdx is taken as iJump+1 (hence the matches will be saved
along Z axis at iJump + 1th row directly) otherwise it is
taken as kNN + 1 (matches will be saved along Z axis at
kNN+1th row). Now the distance between the 1st query sub-
sequence and iJump+1th sub-sequence of target time series is
calculated in line 17 and then the square rooted distance value
and iJump+1th index value are stored at the pIdxth index of
DQ and IQ arrays. After that the distance between other sub-
sequences in each dimensions are iteratively calculated in Line
20-26. In each iteration of Line 20, we incrementally calculate
the distance between iith sub-sequence of Q and tStartth

sub-sequence of T . Like before, in line 22, we operate on
the 1st elements of two previous sub-sequences i.e. ii − 1th

and tStart − 1th sub-sequences (remember ii starts from 2)
whereas in line 23, we operate over the last elements of current
sub-sequences i.e. iith and tStartth sub-sequences of T and
Q respectively. Then the distance value is calculated in Line
24 and the square rooted distance value and tStartth index

14

Algorithm 4: INDEPENDENTTIMESERIESJOIN(DT , Q, m)

Input: The target time series data base (DT) and query time series (Q)
Output: A matrix profile (PQ) and associated matrix profile index (IQ)

1 for iSeries← 1 to length(DT) do
2 T ← [T ,DT [iSeries]] . concatenate individual time series from the data base DT

3 InfoT ← [startIdx, endIdx, fileName] . store the start, end indexes and the file name after concatenating an
individual time series in T

4 nQ ← length(Q); IdxQ ← (nQ −m+ 1); nT ← length(T); IdxT ← nT −m+ 1

5 for iDim← 1 to d do
6 [µT [iDim], σT [iDim], µQ[iDim], σQ[iDim]]← ComputeMeanStd(T , Q)

7 querySubSeq1 ← Q[1 to (1 +m− 1)][1 to d] . get the 1st sub-sequence from T
8 for iDim← 1 to d do
9 [QT [iDim], Dignore[iDim]]←MASS(querySubSeq1, µQ[1][iDim], σQ[1][iDim], T , µT [iDim], σT [iDim]) .

apply MASS to calculate distance between 1st query sub-sequence and all the sub-sequence of T

10 QTinitial ← QT . keeping a copy of the very first dot product
11 [PQ, IQ, MQ, DQ, dQ, IQ]← Obtain kNNMatches(T , IdxT , Q, IdxQ , µT , σT , µQ, σQ, d) . call this

function, see below
12 return PQ[1 : kNN][1 : IdxQ][1 : d]← DQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of Matrix Profile
13 return IQ[1 : kNN][1 : IdxQ][1 : d]← dQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of Index profile
14 return MQ[1 : kNN][1 : IdxQ][1 : d]← IQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of dimensions

value are stored at the pIdxth index of DQ and IQ arrays
(Line 25-26).

We continue like this until iJump + 1 ≤ kNN i.e. we
have accumulated initial k number of matches for each sub-
sequences of Q otherwise maxEleF lag becomes TRUE
in line 15. Hence, in line 27, we check if maxEleF lag
is TRUE then call the FunctionForElsePart 1() in line 28.
After that the remaining operation is performed in line 29
by using the function FunctionForElsePart 3(). These two
functions are explained before in detail (see Section 5.1 for
detailed descriptions). Note the initial two arguments passed in
FunctionForElsePart 1() function are iJump+ 1 and E. The
argument iJump + 1 is used to verify whether the value of
iJump+ 1 is less than user given kNN value or not whereas
the 2nd argument E is used to operate only E numbers of initial
query sub-sequences. After completing the operations within
these two functions, we call the Independent AAMP Part 2()
function in line 30.

The calculation of distance between sub-sequences from Q
and T are performed from right to left direction in Indepen-
dent AAMP Part 2() function (these operations are visually
represented as red colored region/cells at the top of Fig. 3.
The operations for these cells or the distance computation
between these sub-sequences of Q and T were not performed
before). In line 1, we perform IdxsQ − 1 number of jumps
iteratively (notice that iJump starts here from 1 instead
of 0 because we want to perform distance computations of
QSSq8 v/s TSSq7, QSSq7 v/s TSSq6 etc. instead of
QSSq8 v/s TSSq8, QSSq7 v/s TSSq7 etc. which are
already computed before) and in line 2-8, the distance between
tStartth sub-sequence from T and qStartth sub-sequence
from Q is calculated for each dimension and then the square
rooted distance is saved in line 9 and the corresponding index

Q11q1 Q11q2 Q11q3 Q11q4 Q11q5 Q11q6 Q11q7 Q11q8

T11q1 1 22 23 24 25 26 27 28

T11q2 2 1 22 23 24 25 26 27

T11q3 3 2 1 22 23 24 25 26

T11q4 4 3 2 1 22 23 24 25

T11q5 5 4 3 2 1 22 23 24

T11q6 6 5 4 3 2 1 22 23

T11q7 7 6 5 4 3 2 1 22

T11q8 8 7 6 5 4 3 2 1

T11q9 9 8 7 6 5 4 3 2

T11q10 10 9 8 7 6 5 4 3

T11q11 11 10 9 8 7 6 5 4

T11q12 12 11 10 9 8 7 6 5

T11q13 13 12 11 10 9 8 7 6

T11q14 14 13 12 11 10 9 8 7

T11q15 15 14 13 12 11 10 9 8

T11q16 16 15 14 13 12 11 10 9

T11q17 17 16 15 14 13 12 11 10

T11q18 18 17 16 15 14 13 12 11

T11q19 19 18 17 16 15 14 13 12

T11q20 20 19 18 17 16 15 14 13

T11q21 21 20 19 18 17 16 15 14

TSSq = Target Sub-sequence; QSSq = Query Sub-sequence

Figure 3: The visual representation of iterative matching
between the sub-sequences of query and target time series.

i.e. tStart is saved in line 10. After that the distance between
tStartth sub-sequence from T and qStartth sub-sequence
from Q are iteratively calculated in an incremental fashion. To
calculate the distance incrementally, in line 14 we operate on
the 1st elements of two previous sub-sequences i.e. tStartth

and qStartth elements (remember ii starts from 2) whereas
in line 15, we operate over the last elements of current sub-
sequences i.e. tStart+mth and qStart+mth elements. The
distance value is then calculated in Line 16 and then the square
rooted distance is saved in DQ variable at kNN + 1th index
(line 17). The corresponding index i.e. tStart is saved in IQ

15

(kNN+1)th matches

Sub-sequence 1

Sub-sequence 3

Sub-sequence 5

Sub-sequence 7

Sub-sequence 2

Sub-sequence 4

Sub-sequence 6

Sub-sequence 8

……

……

……

Backward

Jump 1

Backward

Jump 2
Backward

Jump 3

Backward

Jump 4

Figure 4: The matches stored at kNN + 1th column of PQ
matrix and considered query sub-sequences in each iteration
of backward diagonal jump.

variable at kNN + 1th index in line 18. The indexes of query
sub-sequences which are considered in each iteration are saved
in V which contains E number of elements or indexes of query
sub-sequences, for which the distances are computed in each
iteration (of line 1). The visual representation of the query sub-
sequences which are considered in each iteration are shown in
Fig. 4, where it can be seen that in 1st iteration, we operate
on QSSq8-QSSq2 (follow the blue colored cells) and in 2nd

iteration, we operate on QSSq8-QSSq2 etc. (notice that the
same visual representation is shown in top red colored region
or cells in Fig. 3).

Hence by using V, we can easily choose the distances,
stored at kNN + 1th column (along Z axis) of PQ array and
at the rows whose indexes can be obtained from V. These
chosen distances are stored in MkNN+1 array in line 20 then
this array is sorted column-wise in descending order and the
sorted distances are stored in distTempkNN+1 array.

Whereas the sorted indexes are saved in indxDimkNN+1

array. After that these E number of distances in d dimen-
sions are copied from distTempkNN+1 array into DQ ar-
ray (line 24) whereas the sorted dimension’s indexes from
indxDimkNN+1 array are copied in dQ array. As mentioned
before that V contains E number of indexes of query sub-
sequences whose kNN + 1th neighbors are updated and
indxDimkNN+1 array contains the sorted dimension’s in-
dexes of kNN + 1th column. Hence, by using these two
arrays i.e. V and indxDimkNN+1, we copy the sorted in-
dexes from IQ array (corresponding to only those query sub-
sequences whose indexes are mentioned in V) into IQ array.
Then in line 29, we iterate over all the query sub-sequences
whose indexes were stored in V array. For each of such
query sub-sequence, we compute the cumulative distance in
cumDistTemp array (line 31) by iteratively summing up
distance values from kNN + 1th column of DQ array in all
the d dimensions. Then this cumulative distance is divided
by dimension’s index i.e. iDim in line 32 and saved in dAll
array at kNN + 1th column. Then the remaining operations
are performed in FunctionForElse Part 3() function (which

is already explained in detail in Section 5.1) and the updated
DQ, dQ, IQ arrays are obtained in line 33. These updated
arrays are returned in line 34 and this way we complete all
the operations of Independent AAMP Part 2() function. Then
we return back at the line 30 of Algorithm 5 and finally the
top kNN number of elements from the updated DQ, dQ, IQ
arrays are copied into PQ, IQ and MQ arrays respectively,
which are returned in line 31− 33 of Algorithm 5.

SM: II KNN SIMILARITY SEARCH FOR INDE-
PENDENT JOIN USING ACAMP ALGORITHM

In this section, we explain the ACAMP technique to perform
the similarity search between Query (Q) and Target time series
(T) like the one is performed in Appendix SM: I. Line 1-2
is self explanatory and are same as in Algorithm 5. In line
3-4, we calculate the mean and standard deviation of all the
sub-sequences of T and Q are computed (similar to line 2-
3 of Algorithm 3). Then line 5-17 remains same as the one
in line 3-15 of Algorithm 5. After that, the Z-Normalized
euclidean distance (similar as in line 11 of Algorithm 3)
between the 1st query sub-sequence and iJump + 1th sub-
sequence of target time series is calculated in line 21 and
then the square rooted distance value and iJump+ 1th index
value are stored at the pIdxth index of DQ and IQ arrays.
After that the Z-normalized euclidean distance (similar as
in line 21 of Algorithm 3) between other sub-sequences in
each dimensions are iteratively and incrementally calculated
by using CalcZnormDist() function in Line 24-29 (in similar
way as the incremental distances are computed in line 20-
24 of Algorithm 5). The following CalcZnormDist() function
is used to calculate the Z− normalized distance between
sub-sequence qSubSeq and tSubSeq. After that the same
operation is performed in line 32-38 as the one is done in
line 27-33. In this manner, finally we obtain PQ, IQ andMQ

arrays respectively.

16

Algorithm 5: INDEPENDENT AAMP JOIN(DT , Q, m)

Input: The target time series data base (DT) and query time series (Q)
Output: A matrix profile (PQ) and associated matrix profile index (IQ)

1 nT ← length(T) nQ ← length(Q) . get the length of time series T and Q
2 IdxsQ ← nQ −m+ 1; IdxsT ← nT −m+ 1 . get the total number of sub-sequences in Q and T
3 PQ ← ((kNN + 1)× IdxQ × d) array . it’s a 3D matrix, initialized with infinity
4 IQ,MQ,DQ, dQ, IQ ← ((kNN + 1)× IdxQ × d) array . these are 3D matrix, initialized with zeros
5 subSeqF lag ← (1× d) vector . it’s a 1D horizontal Boolean vector, initialized with FALSE
6 for iJump← 0 to (IdxsT − 1) do
7 if iJump ≤ (IdxsT − IdxsQ) then
8 E← IdxsQ

9 else
10 E← IdxsT − iJump
11 if (iJump+ 1) ≤ kNN then
12 pIdx← iJump+ 1

13 else
14 pIdx← kNN + 1
15 maxEleF lag ← TRUE

16 for iDim← 1 to d do
17 distV al←

∑
(T [iJump+ 1 : iJump+m][iDim]−Q[1 : m][iDim])2 . compute distance with 1st query

sub-sequence and target sub-sequence
18 DQ[pIdx][1][iDim]←

√
distV al . store the square rooted distance

19 IQ[pIdx][1][iDim]← iJump+ 1 . store the index
20 for ii← 2 to E do
21 tStart← iJump+ ii
22 part1 ← (T [tStart− 1][iDim]−Q[ii− 1][iDim])2

23 part2 ← (T [tStart+m− 1][iDim]−Q[ii+m− 1][iDim])2

24 distV al←
∑
distV al − part1 + part2 . compute the incremental distance

25 DQ[pIdx][ii][iDim]←
√
distV al . store the square rooted distance

26 IQ[pIdx][ii][iDim]← tStart . store the index

27 if maxEleF lag == TRUE then
28 [PQ, DQ, dQ, IQ, dAll]← FunctionForElsePart 1(iJump+ 1, E, PQ, DQ, dQ, IQ, kNN) . call

this function
29 [DQ, dQ, IQ, dAll]← FunctionForElsePart 3(IdxQ, dAll, DT , dT , IT , kNN)

30 [DQ, dQ, IQ]← Independent AAMP Part 2(T , Q,DQ, dQ, IQ, nQ,m, d, dAll)

31 return PQ[1 : kNN][1 : IdxQ][1 : d]← DQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of Matrix Profile
32 return IQ[1 : kNN][1 : IdxQ][1 : d]← dQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of Index profile
33 return MQ[1 : kNN][1 : IdxQ][1 : d]← IQ[1 : kNN][1 : IdxQ][1 : d] . 3D array of dimensions

17

Function Independent_AAMP_Part_2(T , Q,DQ, dQ, IQ, nQ,m, d, dAll):
/* the following code is executed when i > kNN in Algorithm 4 */

1 for iJump← 1 to IdxsQ − 1 do
2 E← (IdxsQ)− iJump
3 V← (E× 1) array . it’s a 1D array, initialized with zeros
4 for iDim← 1 to d do
5 tStart← IdxsQ − iJump
6 qStart← IdxsQ
7 V[1]← qStart
8 distV al←

∑
(T [tStart : tStart+m− 1][iDim]−Q[qStart : qStart+m− 1][iDim])2

9 DQ[kNN + 1][qStart][iDim]←
√
distV al

10 IQ[kNN + 1][qStart][iDim]← tStart
11 for ii← 2 to E do
12 tStart← (IdxsQ − (ii− 1))− iJump
13 qStart← (IdxsQ − (ii− 1))
14 part1 ← (T [tStart][iDim]−Q[qStart][iDim])2

15 part2 ← (T [tStart+m][iDim]−Q[qStart+m][iDim])2

16 distV al←
∑
distV al + part1 − part2

17 DQ[kNN + 1][qStart][iDim]←
√
distV al

18 IQ[kNN + 1][qStart][iDim]← tStart
19 V[ii]← qStart

20 MkNN+1[1 : IdxQ][1 : d]← PQ[1 + kNN] [V[1 : E]] [1 : d] . pick only (kNN + 1)th entry of all the query
sub-sequences and store it in MkNN+1 array

21 distTempkNN+1[1 : E][1 : d], indxDimkNN+1[1 : E][1 : d]← sortColWise (MkNN+1[1 : E][1 : d])
22 if length(V) == 1 then
23 indxDimkNN+1 ← indxDimT

kNN+1 . take transpose of indxDimkNN+1 array

24 DQ[kNN + 1][1 : E][1 : d]← distTempkNN+1[1 : E][1 : d]
25 dQ[kNN + 1][1 : E][1 : d]← indxDimkNN+1[1 : E][1 : d]
26 for p← 1 to E do
27 IQ[kNN + 1] [V[p]] [1 : d]← IQ[kNN + 1] [V[p]] [indxDimkNN+1[p][1 : d]]

28 cumDistTemp← (E× 1) array . it’s a 2D matrix, initialized with zeros
29 for iIdx← 1 to E do
30 for iDim← 1 to d do
31 cumDistTemp[iIdx][1]← cumDistTemp[iIdx][1] + DQ[kNN + 1][iIdx][iDim]
32 dAll [kNN + 1][iIdx][1]← cumDistTemp[iIdx][1]/iDim

33 [DQ, dQ, IQ, dAll]← FunctionForElsePart 3(IdxQ, dAll, DT , dT , IT , kNN)

34 return DQ, dQ, IQ

Function CalcZnormDist(qSubSeq, tSubSeq, m, µQ, σQ, µT , σT):
/* this function is used to compute Z−normalised distance */

1 prod←
∑m
t=1 qSubSeqt × tSubSeqt . get sum of the products of qSubSeq and tSubSeq

2 dV al← 2×
[
m×

[
prod−(m×µQ×µT)

σQ×σT

]]
3 return dV al

18

Algorithm 6: INDEPENDENT ACAMP JOIN(DT , Q, m)

Input: The target time series data base (DT) and query time series (Q)
Output: A matrix profile (PQ) and associated matrix profile index (IQ)

1 nT ← length(T); nQ ← length(Q) . get the length of time series T and Q
2 IdxsQ ← nQ −m+ 1; IdxsT ← nT −m+ 1 . get the total number of sub-sequences in Q and T
3 for iDim← 1 to d do
4 [µT [iDim], σT [iDim], µQ[iDim], σQ[iDim]]← ComputeMeanStd(T , Q)

5 PQ ← ((kNN + 1)× IdxQ × d) array . it’s a 3D matrix, initialized with infinity
6 IQ,MQ,DQ, dQ, IQ ← ((kNN + 1)× IdxQ × d) array . these are 3D matrix, initialized with zeros
7 subSeqF lag ← (1× d) vector . it’s a 1D horizontal Boolean vector, initialized with FALSE
8 for iJump← 0 to (IdxsT − 1) do
9 if iJump ≤ (IdxsT − IdxsQ) then

10 E← IdxsQ

11 else
12 E← IdxsT − iJump
13 if (iJump+ 1) ≤ kNN then
14 pIdx← iJump+ 1

15 else
16 pIdx← kNN + 1
17 maxEleF lag ← TRUE

18 for iDim← 1 to d do
19 qSubSeq ← Q[1 : 1 +m− 1][iDim]
20 tSubSeq ← T [iJump+ 1 : (iJump+ 1) +m− 1][iDim]
21 [distV al,P]←

CalcZnormDist (qSubSeq, tSubSeq,m, µQ[1][iDim], σQ[1][iDim], µT [1][iDim], σT [1][iDim]) .
compute distance with 1st query sub-sequence and target sub-sequence

22 DQ[pIdx][1][iDim]←
√
|distV al| . store the square rooted distance

23 IQ[pIdx][1][iDim]← iJump+ 1 . store the index
24 for ii← 2 to E do
25 tStart← iJump+ ii
26 part1 ← (Q[ii− 1][iDim]− T [ii− 1][iDim])
27 part2 ← (Q[ii+m− 1][iDim]− T [ii+m− 1][iDim])
28 P← P− part1 + part2 . compute the incremental distance

29 distV al← 2 ×
[
m − P − (m × µQ[ii][iDim] × µT [tStart][iDim])

σQ[ii][iDim]×σT [tStart][iDim]

]
30 DQ[pIdx][ii][iDim]←

√
|distV al| . store the square rooted distance

31 IQ[pIdx][ii][iDim]← tStart . store the index

32 if maxEleF lag == TRUE then
....

...

...
38 return MQ[1 : kNN][1 : IdxQ][1 : d]← IQ[1 : kNN][1 : IdxQ][1 : d]

